山羊正常腰椎椎体、软骨终板和髓核弥散特性的DCE-MRI研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Diffusion characteristics of lumbar vertebrae,cartilage endplate and nucleus pulposus in normal goats by dynamic contrast enhanced MRI
  • 作者:尹思 ; 杜恒 ; 赵为公 ; 麻少辉 ; 张明 ; 管民 ; 刘淼
  • 英文作者:YIN Si;DU Heng;ZHAO Weigong;MA Shaohui;ZHANG Ming;GUAN Min;LIU Miao;Department of Orthopaedic Surgery,First Affiliated Hospital of Xi'an Jiaotong University;Department of Medical Imaging,First Affiliated Hospital of Xi'an Jiaotong University;Department of Medical Imaging,Henan Provincial People's Hospital;
  • 关键词:动态增强MRI ; 软骨终板 ; 弥散 ; 对比剂 ; 钆贝葡胺 ; 钆双胺
  • 英文关键词:dynamic contrast enhanced MRI;;cartilage endplate;;diffusion;;contrast agent;;gadobenate dimeglumin;;gadodiamide
  • 中文刊名:SXYX
  • 英文刊名:Journal of Shanxi Medical University
  • 机构:西安交通大学第一附属医院骨科;西安交通大学第一附属医院影像科;河南省人民医院影像科;
  • 出版日期:2019-07-17 10:59
  • 出版单位:山西医科大学学报
  • 年:2019
  • 期:v.50;No.321
  • 基金:陕西省自然科学基础研究计划项目(2019JM-558);; 中央高校基本科研业务费专项基金资肋(xjh012019062)
  • 语种:中文;
  • 页:SXYX201907020
  • 页数:6
  • CN:07
  • ISSN:14-1216/R
  • 分类号:113-118
摘要
目的利用不同对比剂通过动态增强MRI(DCE-MRI)研究山羊正常腰椎椎体、软骨终板和髓核弥散的途径及特性。方法选取8只成年雌性山羊,麻醉后静脉推注钆贝葡胺(Gd-BOPTA)行DCE-MRI扫描,剂量均为0.3 mmol/kg,观察山羊腰椎椎体、软骨终板和髓核中的感兴趣区域(ROI)的信号强度变化。参加上述实验的山羊饲养1周后,采用同样方法和剂量进行钆双胺(Gd-DTPA-B) DCE-MRI扫描。分别测量山羊腰椎椎体、软骨终板和髓核增强前及增强后0 min,5 min,10 min,30min,1 h,1.5 h,2 h,2.5 h的ROI信号强度值,绘制时间-增强率曲线并进行分析对比。结果静注Gd-BOPTA 0 min后,椎体信号强度上升至5 min时达到高峰(增强率216.1%±23.3%),然后缓慢下降,于1.5-2.5 h时再次缓慢上升;软骨终板区时间-增强率曲线与椎体大致相同,至5 min时上升至最高峰(增强率168.7%±39.4%),而后下降趋势较为平缓;髓核时间-增强率曲线呈缓慢上升趋势,至2 h时达到最高峰(增强率102.4%±21.4%),其后迅速下降。静注Gd-DTPA-B后,椎体信号强度从0 min开始迅速上升,上升幅度较Gd-BOPTA低,5 min时达到高峰(增强率119.1%±6.81%),其后缓慢下降,2.5 h时趋于平缓;软骨终板区信号强度从0 min开始上升,10 min时上升至最高峰(增强率81.6%±16.8%),其后下降趋势较为平缓;髓核区信号强度在5 min内显示为负值,之后缓慢上升,2.5 h时达到最高峰(增强率88.5%±7.56%)。两组对比剂在山羊椎体、软骨终板中增强率的最高峰值之间差异有统计学意义(P <0.01),而在山羊腰椎髓核中增强率的最高峰值之间差异无统计学意义(P=0.11)。结论利用DCE-MRI技术可以动态模拟山羊腰椎椎体、软骨终板和髓核弥散的途径,而且溶质的剂量、电磁性和分子量都是影响终板弥散过程的重要因素。
        Objective To study the diffusion pathway and characteristics of lumbar vertebrae,cartilage endplate and nucleus pulposus in normal goats using dynamic contrast enhanced MRI(DCE-MRI) with two different contrast agents. Methods Eight adult female goats were selected as experiment samples. After anesthesia,DCE-MRI examinations were performed in the goats with intravenous injection of gadobenate dimeglumine(Gd-BOPTA) and gadodiamide(Gd-DTPA-B) at a dosage of 0.3 mmol/kg,respectively. The signal intensities of regions of interest(ROI) in the vertebrae,cartilage endplate and nucleus pulposus were measured before enhancement,and 0 min,5 min,10 min,30 min,1 h,1.5 h,2 h,and 2.5 h after enhancement,respectively,and the time-signal intensity curves were drawn and analyzed. Results After intravenous administration of Gd-BOPTA,the signal intensity in the vertebrae reached a peak(216.1% ±23.3%) at 5 min after enhancement and then decreased gradually,and started rising again 1.5-2.5 h after enhancement. The time-signal intensity curve in the cartilage endplate region was similar with that in the vertebrae,with a peak of signal intensity at 168.7% ±39.4%. The signal intensity in the nucleus pulposus showed a slow upward trend,and reached a peak(102.4% ±21.4%) at 2 h,and decreased rapidly afterwards. After intravenous administration of Gd-DTPA-B,the signal intensity in the vertebrae reached a peak(119.1% ±6.81%) at 5 min,decreased gradually and began to flatten at 2.5 h. The signal intensity in the cartilage endplate region reached a peak(81.6% ±16.8%) at 10 min,and decreased gradually afterwards. The signal intensity in the nucleus pulposus was negative within 5 min,and increased slowly to a peak(88.5% ±7.56%) at 2.5 h. There was significant difference in the maximal signal intensities in the vertebrae and cartilage endplate between two contrast agents(P < 0.01),however,there was no significant difference in the maximal signal intensities in the nucleus pulposus(P = 0.11). Conclusion The diffusion pathway of lumbar vertebrae,cartilage endplate and nucleus pulposus in normal goats can be simulated by DCE-MRI technology. The dosage,electromagnetism and molecular weight of the solute are the important factors for influencing the diffusion of endplate.
引文
[1]Van der Werf M,Lezuo P,Maissen O,et al.Inhibition of vertebral endplate perfusion results in decreased intervertebral disc intranuclear diffusion transport[J].J Anat,2007,211(6):769-774.
    [2]Zhu Q,Gao X,Levene HB,et al.Influences of nutrition supply and pathways on the degenerative patterns in human intervertebral disc[J].Spine,2016,41(7):568-576.
    [3]Benneker LM,Heini PF,Alini M,et al.2004 Young investigator award winner:vertebral endplate marrow contact channel occlusions and intervertebral disc degeneration[J].Spine,2005,30(2):167-173.
    [4]Rajasekaran S,Venkatadass K,Naresh Babu J,et al.Pharmacological enhancement of disc diffusion and differentiation of healthy,ageing and degenerated discs:results from in-vivo serial post-contrast MRI studies in 365 human lumbar discs[J].Eur Spine J,2008,17(5):626-643.
    [5]Li H,Yan JZ,Chen YJ,et al.Non-invasive quantification of age-related changes in the vertebral endplate in rats using in vivo DCE-MRI[J].J Orthop Surg Res,2017,12(1):169.
    [6]Galbusera F,Brayda-Bruno M,Wilke HJ.Is post-contrast MRI a valuable method for the study of the nutrition of the intervertebral disc?[J].J Biomech,2014,47(12):3028-3034.
    [7]Rajasekaran S,Naresh-Babu J,Murugan S.Review of postcontrast MRI studies on diffusion of human lumbar discs[J].J Magn Reson Imaging,2007,25(2):410-418.
    [8]Urban JP,Smith S,Fairbank JC.Nutrition of the intervertebral disc[J].Spine,2004,29(23):2700-2709.
    [9]Wu Y,Cisewski SE,Wegner N,et al.Region and strain-dependent diffusivities of glucose and lactate in healthy human cartilage endplate[J].J Biomech,2016,49(13):2756-2762.
    [10]Motaghinasab S,Shirazi-Adl A,Urban JP,et al.Computational pharmacokinetics of solute penetration into human intervertebral discs-effects of endplate permeability,solute molecular weight and disc size[J].J Biomech,2012,45(13):2195-2202.
    [11]胡浩然,李跃华,赵必增.动态对比增强磁共振成像评价腰椎间盘血供的价值[J].中国矫形外科杂志,2016,24(15):1415-1419.
    [12]杜恒,管民,麻少辉,等.磁共振动态增强扫描成年山羊腰椎髓核:定量观察椎间盘的强化程度及营养状态[J].中国组织工程研究与临床康复,2011,15(9):1611-1614.
    [13]Lohrke J,Frenzel T,Endrikat J,et al.25 years of contrast-enhanced MRI:developments,current challenges and future perspectives[J].Adv Ther,2016,33(1):1-28.
    [14]韩志华,陈春,吴剑宏,等.犬正常腰椎间盘的动态MRI特征[J].中国脊柱脊髓杂志,2014,24(3):244-250.
    [15]Ibrahim MA,Jesmanowicz A,Hyde JS,et al.Contrast enhancement of normal intervertebral disks:time and dose dependence[J].AJNR Am J Neuroradiol,1994,15(3):419-423.
    [16]Akansel G,Haughton VM,Papke RA,et al.Diffusion into human intervertebral disks studied with MR and gadoteridol[J].AJNR Am J Neuroradiol,1997,18(3):443-445.
    [17]Henrotte V,Muller RN,Bartholet A,et al.The presence of halide salts influences the non-covalent interaction of MRI contrast agents and human serum albumin[J].Contrast Media Mol Imaging,2007,2(5):258-261.
    [18]Ibrahim MA,Haughton VM,Hyde JS.Enhancement of intervertebral disks with gadolinium complexes:comparison of an ionic and a nonionic medium in an animal model[J].Am J Neuroradiol,1994,15(10):1907-1910.
    [19]Soukane DM,Shirazi-Adl A,Urban JP.Computation of coupled diffusion of oxygen,glucose and lactic acid in an intervertebral disc[J].J Biomech,2007,40(12):2645-2654.
    [20]Perlewitz TJ,Haughton VM,Riley LH 3rd,et al.Effect of molecular weight on the diffusion of contrast media into cartilage[J].Spine,1997,22(23):2707-2710.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700