乌伊岭国家级自然保护区植被覆盖演变及其对气候突变的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evolution of vegetation coverage and its response to abrupt climate change in the Wuyi Mountains National Nature Reserve
  • 作者:盛任 ; 万鲁河
  • 英文作者:SHENG Ren;WAN Luhe;College of Geographical Science, Harbin Normal University;Heilongjiang Provincial Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University;
  • 关键词:气候变化 ; 突变分析 ; 植被覆盖度 ; NDVI ; 相关性分析
  • 英文关键词:climate change;;mutation analysis;;vegetation coverage;;NDVI;;correlation analysis
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:哈尔滨师范大学地理科学学院;哈尔滨师范大学寒区地理环境监测与空间信息服务黑龙江省重点实验室;
  • 出版日期:2019-02-27 08:30
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金项目(41671100)
  • 语种:中文;
  • 页:STXB201909021
  • 页数:14
  • CN:09
  • ISSN:11-2031/Q
  • 分类号:228-241
摘要
探究中国北方高纬度森林覆盖区植被演变受到气候因子变化乃至突变的影响,选用MODIS-NDVI数据与TM/ETM+数据,结合62年的气象观测数据,运用像元二分法模型、累计距平分析、Mann-Kendall非参数检验、滑动T检验与相关性分析,探讨了乌伊岭国家级自然保护区1975—2016年气候变化及其突变对植被覆盖的演化规律,并对不同气候因子与植被覆盖类型的空间变化进行相关性分析。结果表明:(1)乌伊岭保护区气候变化呈现暖干化发展的趋势。年均气温上升(0.557℃/10a),年均最低气温与冬季增温幅度最快,秋季最慢。降水量年际变化较小(-14.052 mm/10a),季节性变化明显。经突变性检验,1980—1995年是气候增温减湿的突变时期。(2)研究区植被生长季的NDVI为0.673,有植被覆盖的区域占87.69%,其中高等植被覆盖区所占比最大。(3)气候突变时期,生长季NDVI显著下降,植被退化严重。低植被覆盖区无显著变化,而高植被覆盖区开始逐渐退化为中等与中低等植被覆盖区。在空间上植被覆盖的退化状况主要由中心山地沿四周低山丘陵区累年逐渐降低。不同植被覆盖区域下降的幅度:混交林>草地>针叶林>耕地>湿地。(4)乌伊岭保护区年均最大NDVI与年均气温和年均降水量的相关系数分别为0.261、0.068,其中呈正相关区域占总面积56.67%和42.79%,在分布趋势上两者都表现出明显的空间差异性。而气温因子影响植被覆盖的空间范围与能力更强,空间相关性更高,也是影响植被退化的主导因素。
        To explore the influence of climatice factor changes and even mutations on vegetation evolution in high-latitude forest cover areas in northern China,we used MODIS-NDVI data and TM/ETM+ data, combined with a 62-year meteorological observation dataset, We analyzed these data using a pixel dichotomous model, cumulative anomaly analysis, a Mann-Kendall non-parametric test, sliding t-test, and correlation analysis. We discussed the evolution of climate change and its mutations on vegetation cover in the Wuyi Mountains National Nature Reserve from 1975 to 2016, as well as different climatic factors and vegetation cover types. The spatial variation was correlated. The results showed that:(1) Climate change in the Wuyi Mountains protected area exhibited a trend of warm and dry development. The annual average temperature increased(0.557℃/10 a), the annual average minimum temperature and winter temperature increased fastest, whereas the autumn increase was the slowest. The annual variation in precipitation was small(-14.052 mm/10 a); however, the seasonal variation was obvious. Through the mutation test, 1980—1995 was a period of sudden change in climate warming and dehumidification.(2) The NDVI of the vegetation growing season in the study area was 0.673, and the area covered by vegetation accounted for 87.69%, of which the highest vegetation coverage area accounted for the largest proportion.(3) During the abrupt climate change period, NDVI decreased significantly during the growing season, and vegetation degradation was severe. There was no significant change in the low vegetation coverage area, and the high vegetation coverage area began to gradually degenerate into medium and low-level vegetation coverage areas. The degradation of vegetation cover in space was mainly reduced in the central mountainous areas along the low hills and surrounding areas. The extent of decline in different vegetation coverage areas was as follows: mixed forest > grassland > coniferous forest > cultivated land > wetland.(4) The correlation coefficient between annual average maximum NDVI and annual average temperature and annual average precipitation in the Wuyi Mountains protected area was 0.261 and 0.068, respectively, and the positive correlation area accounted for 56.67% and 42.79% of the total area, respectively. Significant spatial differences were observed. The temperature factor affecteds the spatial extent and capacity of vegetation coverage, and had a higher spatial correlation, which was also the dominant factor affecting vegetation degradation.
引文
[1] Intergovernmental Panel on Climate Change.Climate Change 2014:Impacts,Adaptation,and Vulnerability.Part A:Global and Sectoral Aspects.Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge:Cambridge University Press,2014:1- 12.
    [2] Intergovernmental Panel on Climate Change.Climate Change 2013:The Physical Science Basis.Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge:Cambridge University Press,2013:2- 6.
    [3] 《第二次气候变化国家评估报告》编写委员会.第二次气候变化国家评估报告.北京:科学出版社,2011.
    [4] Intergovernmental Panel on Climate Change.Climate Change 2013:The Physical Science Basis.Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge:Cambridge University Press,2013:3- 8.
    [5] 姜晓艳,刘树华,马明敏,张菁,宋军.东北地区近百年降水时间序列变化规律的小波分析.地理研究,2009,28(02):354- 362.
    [6] Zhao M S,Running S W.Drought-induced reduction in global terrestrial net primary production from 2000 through 2009.Science,2010,329(5994):940- 943.
    [7] Walker B,Steffen W,Canadell J,Ingram J.The Terrestrial Biosphere and Global Change:Implications for Natural and Managed Ecosystems.Stockholm,Sweden:Cambridge University Press,1997.
    [8] Raich J W,Tufekciogul A.Vegetation and soil respiration:correlations and controls.Biogeochemistry,2000,48(1):71- 90.
    [9] Hilker T,Lyapustin A I,Tucker C J,Hall F G,Myneni R B,Wang Y J,Bi J,de Moura Y M,Sellers P J.Vegetation dynamics and rainfall sensitivity of the Amazon.Proceedings of the National Academy of Sciences of the United States of America,2014,111(45):16041- 16046.
    [10] Wang X H,Piao S L,Ciais P,Li J S,Friedlingstein P,Koven C,Chen A P.Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006.Proceedings of the National Academy of Sciences of the United States of America,2011,108(4):1240- 1245.
    [11] Piao S L,Wang X H,Ciais P,Zhu B,Wang T,Liu J.Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006.Global Change Biology,2011,17(10):3228- 3239.
    [12] Cheng H.Abrupt climate change:debate or action.Chinese Science Bulletin,2004,49(18):1997- 2002.
    [13] 阿多,赵文吉,宫兆宁,张敏,范云豹.1981—2013华北平原气候时空变化及其对植被覆盖度的影响.生态学报,2017,37(2):576- 592.
    [14] 邓兴耀,刘洋,刘志辉,姚俊强.中国西北干旱区蒸散发时空动态特征.生态学报,2017,37(9):2994- 3008.
    [15] 魏凤英.现代气候统计诊断与预测技术(第二版).北京:气象出版社,2007.
    [16] He F,Shakun J D,Clark P U,Carlson A E,Liu Z Y,Otto-Bliesner B L,Kutzbach J E.Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation.Nature,2013,494(7435):81- 85.
    [17] 周秀杰,王凤玲,吴玉影,那济海,潘华盛,王勇.近60年来黑龙江省与东北及全国气温变化特点分析.自然灾害学报,2013,22(2):124- 129.
    [18] Andersen K K,Azuma N,Barnola J M,Bigler M,Biscaye P,Caillon N,Chappellaz J,Clausen H B,Dahl-Jensen D,Fischer H,Flückiger J,Fritzsche D,Fujii Y,Goto-Azuma K,Gr?nvold K,Gundestrup N S,Hansson M,Huber C,Hvidberg C S,Johnsen S J,Jonsell U,Jouzel J,Kipfstuhl S,Landais A,Leuenberger M,Lorrain R,Masson-Delmotte V,Miller H,Motoyama H,Narita H,Popp T,Rasmussen S O,Raynaud D,Rothlisberger R,Ruth U,Samyn D,Schwander J,Shoji H,Siggard-Andersen M L,Steffensen J P,Stocker T,Sveinbj?rnsdóttir A E,Svensson A,Takata M,Tison J L,Thorsteinsson T,Watanabe O,Wilhelms F,White J W C.High-resolution record of Northern Hemisphere climate extending into the last interglacial period.Nature,2004,431(7005):147- 151.
    [19] 贺伟,布仁仓,刘宏娟,熊在平,胡远满.气候变化对东北沼泽湿地潜在分布的影响.生态学报,2013,33(19):6314- 6319.
    [20] Cattiaux J,Vautard R,Cassou C,Yiou P,Masson‐Delmotte Y V,Codron F.Winter 2010 in Europe:a cold extreme in a warming climate.Geophysical Research Letters,2010,37(20):L20704.
    [21] Rodriguez-Iturbe I.Ecohydrolog:A hydrologic perspective of climate-soil-vegetation dynamies.Water Resources Research,2000,36(1):3- 9.
    [22] Tucker C J,Pinzon J E,Brown M E,Slayback D A,Pak E W,Mahoney R,Vermote E F,El Saleous N.An extended AVHRR 8‐km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data.International Journal of Remote Sensing,2005,26(20):4485- 4498.
    [23] Jeong S J,Ho C H,Gim H J,Brown M E.Phenology shifts at start vs.end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982- 2008.Global Change Biology,2011,17(7):2385- 2399.
    [24] Song X,Saito G,Kodama M,Sawada H.Early detection system of drought in East Asia using NDVI from NOAA/AVHRR data.International Journal of Remote Sensing,2004,25(16):3105- 3111.
    [25] Wilson N R,Norman L M.Analysis of vegetation recovery surrounding a restored wetland using the normalized difference infrared index (NDII) and normalized difference vegetation index (NDVI).International Journal of Remote Sensing,2018,39(10):3243- 3274.
    [26] Gamon J A,Kovalchuck O,Wong C Y S,Harris A,Garrity S R.Monitoring seasonal and diurnal changes in photosynthetic pigments with automated PRI and NDVI sensors.Biogeosciences,2015,12(13):4149- 4159.
    [27] Shen M G,Tang Y H,Chen J,Zhu X L,Zheng Y H.Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau.Agricultural and Forest Meteorology,2011,151(12):1711- 1722.
    [28] McLaughlin D L,Cohen M J.Realizing ecosystem services:wetland hydrologic function along a gradient of ecosystem condition.Ecological Applications,2013,23(7):1619- 1631.
    [29] Lloret F,Escudero A,Iriondo J M,Martínez‐Vilalta J,Valladares F.Extreme climatic events and vegetation:the role of stabilizing processes.Global Change Biology,2012,18(3):797- 805.
    [30] Walther G R,Post E,Convey P,Menzel A,Parmesan C,Beebee T J C,Fromentin J M,Hoegh-Guldberg O,Bairlein F.Ecological responses to recent climate change.Nature,2002,416(6879):389- 395.
    [31] Cinelli F,Picchi C,Saggese A,et al.Assessment and management of vegetation and green areas ti prevent damage caused by extreme weather events.2018:9- 41.
    [32] 殷刚,孟现勇,王浩,胡增运,孙志群.1982- 2012年中亚地区植被时空变化特征及其与气候变化的相关分析.生态学报,2017,37(9):3149- 3163.
    [33] Reichstein M,Bahn M,Ciais P,Frank D,Mahecha M D,Seneviratne S I,Zscheischler J,Beer C,Buchmann N,Frank D C,Papale D,Rammig A,Smith P,Thonicke K,van der Velde M,Vicca S,Walz A,Wattenbach M.Climate extremes and the carbon cycle.Nature,2013,500(7462):287- 295.
    [34] Schmidt M W I,Torn M S,Abiven S,Dittmar T,Guggenberger G,Janssens I A,Kleber M,K?gel-Knabner I,Lehmann J,Manning D A C,Nannipieri P,Rasse D P,Weiner S,Trumbore S E.Persistence of soil organic matter as an ecosystem property.Nature,2011,478(7367):49- 56.
    [35] Richardson A D,Keenan T F,Migliavacca M,Ryu Y,Sonnentag O,Toomey M.Climate change,phenology,and phenological control of vegetation feedbacks to the climate system.Agricultural and Forest Meteorology,2013,169:156- 173.
    [36] Gottfried M,Pauli H,Futschik A,Akhalkatsi M,Baran response of mountain vegetation to climate change.Nature Climate Change,2012,2(2):111- 115.
    [37] Xu L,Myneni R B,Chapin III F S,Callaghan T V,Pinzon J E,Tucker C J,Zhu Z,Bi J,Ciais P,T?mmervik H,Euskirchen E S,Forbes B C,Piao S L,Anderson A T,Ganguly S,Nemani R R,Goetz S J,Beck P A S,Bunn A G,Cao C,Stroeve J C.Temperature and vegetation seasonality diminishment over northern lands.Nature Climate Change,2013,3(6):581- 586.
    [38] Park H S,Sohn B J.Recent trends in changes of vegetation over East Asia coupled with temperature and rainfall variations.Journal of Geophysical Research:Atmospheres,2010,115(D14):D14101.
    [39] 马巍,王大雁.深土冻土力学的研究现状与思考.岩土工程学报,2012,34(6):1123- 1130.
    [40] Hugelius G,Tarnocai C,Broll G,Canadell J G,Kuhry P,Swanson D K.The Northern Circumpolar Soil Carbon Database:spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions.Earth System Science Data,2013,5(1):3- 13.
    [41] Stendel M,Christensen J H.Impact of global warming on permafrost conditions in a coupled GCM.Geophysical Research Letters,2002,29(13):1632.
    [42] Cramer W,Bondeau A,Woodward F I,Prentice I C,Betts R A,Brovkin V,Cox P M,Fisher V,Foley J A,Friend A D.Global response of terrestrial ecosystem structure and function to CO2 and climate change:results from six dynamic global vegetation models.Global Change Biology,2001,7(4):357- 373.
    [43] Brandt M,Hiernaux P,Tagesson T,Verger A,Rasmussen K,Diouf A A,Mbow C,Mougin E,Fensholt R.Woody plant cover estimation in drylands from Earth Observation based seasonal metrics.Remote Sensing of Environment,2016,172:28- 38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700