生物质气与煤混燃锅炉分离式燃尽风反切消旋数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation of reverse-tangent and swirling-elimination for SOFA of boiler co-firing biomass gas with coal
  • 作者:张小桃 ; 黄勇 ; 赵伟 ; 李柯颖 ; 段佛元
  • 英文作者:ZHANG Xiaotao;HUANG Yong;ZHAO Wei;LI Keying;DUAN Foyuan;School of Electric Power, North China University of Water Resources and Electric Power;
  • 关键词:燃煤锅炉 ; 生物质气 ; 混合燃烧 ; 速度场 ; 温度场 ; SOFA ; 反切角度 ; 数值模拟
  • 英文关键词:coal-fired boiler;;biomass gas;;co-firing;;velocity field;;temperature field;;SOFA;;reverse angle;;numerical simulation
  • 中文刊名:RLFD
  • 英文刊名:Thermal Power Generation
  • 机构:华北水利水电大学电力学院;
  • 出版日期:2019-02-02 18:31
  • 出版单位:热力发电
  • 年:2019
  • 期:v.48;No.387
  • 基金:河南省教育厅自然科学研究计划项目(2011A140014);; 河南省科技发展计划项目(112102210281)~~
  • 语种:中文;
  • 页:RLFD201902004
  • 页数:8
  • CN:02
  • ISSN:61-1111/TM
  • 分类号:27-34
摘要
为了研究分离式燃尽风(SOFA)水平摆动形成反切角度对生物质气与煤粉混燃切圆锅炉出口速度偏差和温度偏差的影响,基于Fluent模拟软件搭建了纯煤掺烧松木气模型,对某电厂330MW机组掺烧10%松木气的燃煤锅炉SOFA不反切、反切10°、反切15°、反切20°等4种工况的燃烧过程进行数值模拟,分析不同工况下主燃烧区、折焰角、炉膛出口的速度场、温度场的分布特征。结果表明:在主燃烧区,SOFA反切对其流场影响较小;当SOFA开始反切时,折焰角残余切圆消失,流场趋于均匀,有效削弱了烟道的残余旋转,出口烟气速度偏差和温度偏差明显降低;当SOFA反切角度达到15°,出口左右侧速度偏差比和温度偏差比达到最低,其中心温度集中在其中心区域,速度场和烟气温度场的均匀性最好;当SOFA反切角度增大到20°时,出口烟速偏差比和烟气温度偏差比有所增大,其中心温度开始向其右侧偏移,速度分布和温度分布的均匀性下降。因此,最佳的SOFA水平摆动形成的反切角度为15°。
        In order to study the effect of reverse tangent angle formed by horizontal swing of separated over fire air(SOFA) on velocity deviation and temperature deviation at outlet of tangential boiler co-firing pulverized coal with biomass gas, a model of pure coal blending with pine wood gas was built up using the Fluent software. By taking a boiler co-firing coal with 10% biomass gas as the object, the combustion process under different conditions(with the SOFA reverse angle of 0°, 10°, 15°, 20°) was simulated, and the velocity and temperature fields in the main combustion zone, arch nose zone and furnace outlet zone were analyzed. The results show that,the SOFA reverse tangent has a little effect on velocity and temperature fields in the main combustion zone. When the SOFA begins to reverse, the residual tangential circle of the arch nose disappears, the flow field tends to be uniform and the residual swirling of the flue gas is obviously weakened, and the velocity deviation and temperature deviation of the outlet flue gas dramatically reduces. When the SOFA reverse angle is 15°, the velocity and temperature deviation ratios at the left and right sides of the furnace outlet reach the lowest, the center temperature is concentrated in the central region, and the uniformity of velocity field and temperature field reaches the best. When the SOFA reverse angle rises to 20°, the velocity and temperature deviation ratios at the outlet increases, the center temperature begins to shift to the right side, and the uniformity of velocity field and temperature field decreases. Therefore, 15° is the optimum SOFA reverse angle.
引文
[1]王诚.2 008 t/h锅炉热偏差原因分析与改造[J].电力安全技术,2011,13(2):35-37.WANG Cheng.Analysis and modification of the cause of thermal deviation of 2 008 t/h boiler[J].Power Safety Technology,2011,13(2):35-37.
    [2]LIU Y,FAN W,LI Y.Numerical investigation of air-staged combustion emphasizing char gasification and gas temperature deviation in a large-scale,tangentially fired pulverized-coal boiler[J].Applied Energy,2016,177:323-334.
    [3]AKKINEPALLY B,SHIM J,YOO K.Numerical and experimental study on biased tube temperature problem in tangential firing boiler[J].Applied Thermal Engineering,2017,126:92-99.
    [4]PARK H Y,BAEK S H,KIM Y J,et al.Numerical and experimental investigations on the gas temperature deviation in a large scale,advanced low NOx,tangentially fired pulverized coal boiler[J].Fuel,2013,104(2):641-646.
    [5]YIN C,ROSENDAHL L,CONDRA T J.Further study of the gas temperature deviation in large-scale tangentially coal-fired boilers[J].Fuel,2003,82(9):1127-1137.
    [6]张广科,毛华.锅炉炉膛出口烟气温度高和热偏差原因分析[J].大氮肥,2013,36(5):306-308.ZHANG Guangke,MAO Hua.Cause analysis of flue gas temperature and heat deviation at furnace outlet[J].Large Nitrogenous Fertilizer,2013,36(5):306-308.
    [7]孙春晖,杜平,张华.DG670t/h-8型锅炉燃烧器反切风改造[J].河北电力技术,2006,25(3):27-29.SUN Chunhui,DU Ping,ZHANG Hua.Burner reverse tangential blowing retrofit of DG670t/h-8 boiler[J].Hebei Electric Power,2006,25(3):27-29.
    [8]潘天晟,张金奎.采用反切风改善水冷壁近壁气氛的实验研究[J].华中电力,2012,25(3):22-26.PAN Tiansheng,ZHANG Jinkui.Experiment on improving the atmosphere near the water-wall by reverese tangential wind[J].Central China Electric Power,2012,25(3):22-26.
    [9]李成俊.600 MW四角切圆燃烧锅炉炉膛出口热偏差研究[D].哈尔滨:哈尔滨工业大学,2015:1-59.LI Chengjun.Research on thermal deviation at outlet in a600 MW tangentially fired boiler[D].Harbin:Harbin Institute of Technology,2015:1-59.
    [10]张小桃,闻猛,王爱军,等.燃煤锅炉掺烧松木气燃烧过程数值模拟研究[J].可再生能源,2017,35(11):1595-1600.ZHANG Xiaotao,WEN Meng,WANG Aijun,et al.Numerical study on the combustion process of pine gas co-firing in a coal-fired boiler[J].Renewable Energy Resources,2017,35(11):1595-1600.
    [11]张小桃,黄明华,王爱军,等.生物质气化特性研究及?分析[J].农业工程学报,2011,27(2):282-286.ZHANG Xiaotao,HUANG Minghua,WANG Aijun,et al.Characteristics of biomass gasification and exergy analysis[J].Transactions of the CSAE,2017,27(2):282-286.
    [12]张小桃,闻猛,丁全斌,等.煤粉与生物质气混燃锅炉燃烧特性数值模拟研究[J].热能动力工程,2017,32(3):82-87.ZHANG Xiaotao,WEN Meng,DING Quanbin,et al.Numerical simulation study on the boiler combustion performance for biomass gas co-firing with pulverized coal[J].Journal of Engineering for Thermal Energy and Power,2017,32(3):82-87.
    [13]潘朝红,梁化忠,张新亮,等.反切技术减轻烟气温度偏差试验研究[J].河北电力技术,2002,21(5):42-43.PAN Chaohong,LIANG Huazhong,ZHANG Xinliang,et al.An experimental research on reducing flue gas temperature deviation by counter-tangential air technology[J].Hebei Electric Power Technology,2002,21(5):42-43.
    [14]史习仁,张少根.大容量锅炉烟侧热力偏差和攻关成效[J].锅炉技术,1998(3):1-8.SHI Xiren,ZHANG Shaogen.Thermal deviation on gas side of large capacity boilers and research results[J].Boiler Technology,1998(3):1-8.
    [15]严响林,顾昌,龚广雄,等.一次风微反切对结渣和残余旋转的影响及其数值模拟[J].华东电力,2005,33(8):54-58.YAN Xianglin,GU Chang,GONG Guangxiong,et al.Influence of reverse tangential mode of primary air on slagging and residual torsion and its numerical simulation[J].East China Electric Power,2005,33(8):54-58.
    [16]张晋,袁益超,刘聿拯,等.分隔屏布置对四角布置切圆燃烧锅炉水平烟道空气动力场的影响[J].中国电机工程学报,2010,30(17):6-11.ZHANG Jin,YUAN Yichao,LIU Yuzheng,et al.Influence of the panel superheater layout on air dynamic field in tangentially fired boiler horizontal gas pass[J].Proceedings of the CSEE,2010,30(17):6-11.
    [17]张小桃,赵伟,闻猛.不同温度下生物质气与煤粉混燃过程及污染物排放特性[J].热力发电,2017,46(9):47-52.ZHANG Xiaotao,ZHAO Wei,WEN Meng.Study on co-combustion process and pollutant emission characteristics of biomass gas and pulverized coal at different temperatures[J].Thermal Power Generation,2017,46(9):47-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700