基于正交试验的热障涂层性能变化规律研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the Variation Rules of Thermal Barrier Coatings Performance Based on Orthogonal Experiment
  • 作者:程广贵 ; 唐荣荣 ; 杨诚 ; 张忠强 ; 袁宁一 ; 丁建宁
  • 英文作者:Guanggui Cheng;Rongrong Tang;Cheng Yang;Zhongqiang Zhang;Ningyi Yuan;Jianning Ding;Jiangsu University Research Center of Micro/Nano Science and Technology;Changzhou University Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering;Huarui(Jiangsu)Gas turbine services limited company;
  • 关键词:热障涂层 ; 大气等离子喷涂(APS) ; 表面形貌 ; 残余应力
  • 英文关键词:Thermal barrier coating;;Atmospheric plasma spraying(APS);;Surface morphology;;Residual stress
  • 中文刊名:RPTJ
  • 英文刊名:Thermal Spray Technology
  • 机构:江苏大学微纳米科学技术研究中心;常州大学江苏省光伏科学与工程协同创新中心;华瑞(江苏)燃机服务有限公司;
  • 出版日期:2019-06-15
  • 出版单位:热喷涂技术
  • 年:2019
  • 期:v.11;No.40
  • 基金:国家自然科学基金资助(项目号51675236);; 江苏省青蓝工程骨干青年教师培养计划资助
  • 语种:中文;
  • 页:RPTJ201902010
  • 页数:9
  • CN:02
  • ISSN:11-5828/TF
  • 分类号:55-63
摘要
热障涂层广泛应用于燃气轮机、飞机发动机等装备上,其性能直接影响装备的使用寿命。本文采用大气等离子喷涂工艺,在GH4169高温合金表面依次制备NiCoCrAlY金属粘结层和ZrO_2-8%wtY_2O_3陶瓷层。采用扫描电镜和残余应力测试仪对样品的表面形貌、孔隙率以及表面的残余应力进行测试。通过正交试验研究喷涂工艺参数对热障陶瓷层厚度、孔隙率以及残余应力的影响,实验结果表明,对陶瓷层厚度的影响因素从大到小顺序依次为氢气流量,电流,氩气流量,喷涂距离;在相同的制备时间内,陶瓷层的厚度随着电流与氢气流量的增大而明显的增大;随着氩气流量与喷涂距离的增大,陶瓷层的厚度随之减小;对陶瓷层孔隙率的影响因素从大到小顺序依次为喷涂距离,氢气流量,电流,氩气流量。当氩气流量从30 slpm/min增加到40 slpm/min时,氢气流量从5slpm/min增加到10 slpm/min时,孔隙率随之增大;当氩气流量从40 slpm/min增加到50 slpm/min时,氢气流量从10 slpm/min增加到15 slpm/min时,孔隙率随之减小。当喷涂距离从5 mm增加到10 mm时,孔隙率随之减小,而当喷涂距离从10 mm增加到15 mm时,孔隙率急剧升高,而随着电流的增大,孔隙率减小。电流、氢气流量以及氩气流量对涂层残余应力造成很大影响,随着电流以及氢气流量的增大,氩气流量的减小,涂层表面的残余应力急剧上升。
        Thermal barrier coatings are widely used in gas turbines, aircraft engines and other equipments, and their performance directly affects the service life of the equipment. In this paper, NiCoCrAlY metal bonding layer and ZrO_2-8%wtY_2O_3 thermal barrier coating were prepared on the surface of GH4169 super alloy by atmospheric plasma spraying. The surface morphology, porosity and residual stress of the sample were tested using a scanning electron microscope and a residual stress tester. The effects of spraying process parameters on the thickness and porosity of the thermal barrier ceramic layer were investigated by orthogonal test. The experimental results show that the factors affecting the thickness of the ceramic layer are, in descending order, hydrogen flow, current, argon flow, and spray distance; during the same preparation time, the thickness of the ceramic layer increases with the increase of current and hydrogen flow rate; as the argon flow rate and spray distance increase, the thickness of the ceramic layer decreases; The factors affecting the rate from the largest to the smallest are spray distance, hydrogen flow, current, and argon flow. When the argon flow rate increases from 30 slpm/min to 40 slpm/min, the porosity increases as the hydrogen flow rate increases from 5 slpm/min to 10 slpm/min; when the argon flow rate increases from 40 slpm/min to 50 slpm/min, When the hydrogen flow rate increases from 10 slpm/min to 15 slpm/min, the porosity decreases. When the spraying distance is increased from 5 mm to 10 mm, the porosity is decreased, and when the spraying distance is increased from 10 mm to 15 mm, the porosity sharply increases, and as the current increases, the porosity decreases.The current, hydrogen flow rate and argon flow rate have a great influence on the residual stress of the coating. As the current and the flow rate of hydrogen increase, the flow rate of the argon gas decreases, and the residual stress on the surface of the coating rises sharply.
引文
[1]Curry N,Markocsan N,Li X H,et al.Next generation thermal barrier coatings for the gas turbine industry[J].Journal of Thermal Spray Technology,2011,20(1-2):108-115.
    [2]Rupangudi S K,Ramesh C S,Veerabhadhrappa K,et al.活塞涂层对柴油机性能影响的研究[J].闫红梅,译.国外内燃机,2015,47(1):63-65.
    [3]Liu L R,Wen T,Li J G,et al.Tensile properties of a single crystal Ni-based super alloy at different temperatures[J].Journal of Shenyang University of Technology,2011,33(2):129-132.
    [4]Hardwicke C U,Lau Y C.Advances in thermal spray coatings for gas turbine and energy generation:a review[J].Journal of Thermal Spray Technology,2013,6:564-576.
    [5]Kumar V,Balasubramanian K.Progress update on failure mechanisms of advanced thermal barrier coatings:a review[J].Progress in Organic Coatings,2016,90:54-82.
    [6]Mauer G,Jarligo M O,Mack D E,et al.Plasma sprayed thermal barrier coatings:new materials,processing issues and solutions[J].Journal of Thermal Spray Technology,2013,6:646-658.
    [7]Quazi M A,Parashar S.热障涂层对非道路用柴油机性能和排放的影响[J].张然治,译.国外内燃机,2016,48(1):32-36.
    [8]Padture N P,Gell M,Jordan E H.Thermal barrier coatings for gas-turbine engine applications[J].Science,2002,296(5566):280-284.
    [9]Armelle V,Christian M,Jun A,et al.The 2016 thermal spray roadmap[J].Journal of Thermal Spray Technology,2016,25(8):1376-1440.
    [10]田民波,刘德令.薄膜科学技术手册(下册)[M].北京:机械工业出版社,1991:774-776.
    [11]Amara M,Timchenko V,Ganaoui M E,et al.A 3D computational model of heat transfer coupled to phase change in multilayer materials with random thermal contact resistance[J].International Journal of Thermal Sciences,2008,48(2):421-427.
    [12]Kout A,Wiederkehr T,Muller H.Efficient stochastic simulation of thermal spray processes[J].Surface&Coatings Technology,2008.203(12):1580-1595.
    [13]Kriba I,Djebaili A.Numerical study of melted particles crush metallic substrates and the interaction between particles and a plasma beam in the thermal projection process[J].Applied Surface Science,2008,1047(1).
    [14]董允,张延森,林晓娉.现代表面工程技术[M].北京:机械工业出版社,2000,7.
    [15]Friisa M, Perssona C, Wigrenb J.Influence of particle inflight characteristics on the microstructure of atmospheric plasma sprayed yttria stabilized Zr02[J].Surface and Coatings Technology,2001,141(2-3):115-127.
    [16]Fauchais P.Understanding plasma spraying[J].Journal of Physics D Applied Physics,2004,37(9):86.
    [17]Chen Y,Wang G,Zhang H.Numerical simulation of coating growth and pore formation in rapid plasma spray tooling[J].Thin Solid Films,2001,390(1):13-19.
    [18]Srivastava A K,Anandani R C,Dhar A.Effect of thermal conditions on microstrural features during spray forming[J].Journal of Materials Science,2001,304(1):587-591.
    [19]Sampath S,Jiang X.Splat formation and microstructure development during plasma spraying:deposition temperature effects[J].Journal of Materials Science,2001,304(3):144-150.
    [20]Friis M,Persson C, Wigren J.Influence of particle inflight characteristics on the microstructure of atmospheric plasma sprayed yttria stabilized Zr02[J].Surface and Coatings Technology,2001,141(2):115-127.
    [21]纪小健.大气等离子喷涂7wt.%Y2O3-ZrO2涂层的工艺及性能研究[D].北京:北京工业大学,2009.
    [22]Fauchais P.Understanding plasma spraying[J].Journal of Physics D:Applied Physics.2004,37:86-108.
    [23]何箐,李嘉,詹华,等.粘结层和陶瓷层厚度对纳米结构热障涂层性能的影响[J].表面技术,2013,(1):17-20.
    [24]邱琳,郑兴华,李谦,等.陶瓷热障涂层的热导率和热扩散率测量[J].功能材料,2010,41(z2):264-267.
    [25]Kakuda T,Limarga A,Vaidya A,et al.Non-destructive thermal property measurements of an APS TBC on an intact turbine blade[J].Surface&Coatings Technology,2010,205(2):446-451.
    [26]Kulkarni A,Vaidya A,Goland A,et al.Processing effects on porosity-property correlations in plasma sprayed yttriastabilized zirconia coatings[J].Materials and Engineering,2003,359:100-111.
    [27]Martin F,Christer P,Jan W.Influence of particle inflight characteristics on the microstructure of atmospheric plasma sprayed yttria stabilized ZrO2[J].Surface and Coatings Technology,2001,141:1 15-127.
    [28]Li C J,Ohmori A.Relationships between the microstructure and properties of thermally sprayed deposits[J].Journal of Thermal Spray Technology,2003,12(1):6.
    [29]Darolia R.Thermal barrier coatings technology:critical review,progress update,remaining challenges and prospects[J].International Materials Reviews,2013,58(6):315-348.
    [30]Jones R L,Mess D.Improved tetragonal phase stability at1400℃with scandia,yttria-stabilized zirconia[J].Surface and Coatings Technology,1996,86-87:94-101.
    [31]Ghafouri-Azar R,Mostaghimi J,Chandra S.Modeling development of residual stresses in thermal spray coatings[J].Computational Materials Science,2006,35(1):13-26.
    [32]邵淑英,范正修,范瑞瑛,等.沉积温度对电子束蒸发沉积Zr02薄膜性质的影响[J].中国激光,2004,31(6):701-704.
    [33]Clyne T W.Residual stresses in surface coating and their effects on interfacial debonding[J].Key Engineering Materials,1996,116-117(1/2):307-3 30.
    [34]刘瑞江,张业旺,闻崇炜,等.正交试验设计和分析方法研究[J].实验技术与管理.2010,27(9):52-55.
    [35]郝云飞,田志杰,刘涛,等.激光重熔等离子喷涂纳米氧化锆热障涂层组织与性能[J].宇航材料工艺.2010,(2):88-90+105.
    [36]马维,潘文霞,张文宏,等.热喷涂涂层中残余应力分析和检测研究进展[J].力学进展,2002,32(1):41-56.
    [37]Zhang X C,Xu B S,Wang H D,et al.Modeling of the residual stresses in plasma-spraying functionally graded ZrO2/NiCoCrAlY coatings using finite element method[J].Materials&Design,2006,27(4):308-3 15.
    [38]Celik E,Sarikaya O.The effect on residual stresses of porosity in plasma sprayed MgO-ZrO2,coatings for an internal combustion diesel engine[J].Materials Science&Engineering A,2004,379(1):11-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700