小尺度超临界CO_2管道小孔泄漏减压及温降特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Decompression and temperature drop characteristics of small-scale supercritical CO_2 pipeline leakage with small holes
  • 作者:顾帅威 ; 李玉星 ; 滕霖 ; 王财林 ; 胡其会 ; 张大同 ; 叶晓 ; 王婧涵
  • 英文作者:GU Shuaiwei;LI Yuxing;TENG Lin;WANG Cailin;HU Qihui;ZHANG Datong;YE Xiao;WANG Jinghan;Key Laboratory of Oil and Gas Storage and Transportation in Shandong, China University of Petroleum;
  • 关键词:管道泄漏 ; 超临界二氧化碳 ; 压力响应 ; 最低温度 ; 杂质
  • 英文关键词:pipeline leakage;;supercritical carbon dioxide;;pressure response;;minimum temperature;;impurity
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:中国石油大学(华东)山东省油气储运安全省级重点实验室;
  • 出版日期:2019-02-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.329
  • 基金:国家科技重大专项(2016ZX05016-002)
  • 语种:中文;
  • 页:HGJZ201902011
  • 页数:8
  • CN:02
  • ISSN:11-1954/TQ
  • 分类号:101-108
摘要
超临界CO_2管道运行过程中一旦发生泄漏,将会造成严重的事故。本文基于小尺度CO_2管道(长14.85m,内径15mm)实验装置开展了超临界纯CO_2及含杂质超临界CO_2管道的小孔泄漏实验,测量了不同泄漏孔径及不同起始压力条件下超临界CO_2管道泄漏过程中管内介质的压力和温度响应曲线,分析了管道泄漏过程中CO_2的相态变化。研究结果表明,在超临界CO_2管道泄漏过程中,管内流体温度存在一个最低值,CO_2由超临界态直接转变为气态;泄漏孔径越大,管道泄漏时间越短,管内介质温度所能达到的最低值更低;N_2的存在缩短了管道泄漏的时间,提高了管内介质的最低温度,且N_2含量越高,该最低温度越高。此外基于管道泄漏时间的自保持性,得出了不同泄漏孔径和起始压力条件下管内压力随泄漏时间变化的经验公式。
        Serious accidents will be caused by the leakage of supercriticalLeakage experiments on small leakage diameters for pure supercriticalcontaining impurities were performed with a small scale(14.85m long,15mm id)laboratory apparatus.The pressure and temperature responses and the characteristics of phase transitions during the leakage were studied with various leakage diameters and initial inner pressures.The results show that the temperature inside the pipeline reached a minima during the leakage of supercriticaland thetransferred directly from the supercritical state to the gaseous state.Besides,the leakage time and the minimum temperature of the medium in the pipe decreased with the increasing of leakage sizes.The addition of N_2 shortened the whole leakage time and also increased the minimum temperature.The higherthe higher the minimum temperature was.Furthermore,based on the self-preservation of leakage time for supercriticalempirical formulas for the pressure responses inside the pipeline were obtained under different leakage nozzle diameters and initial inner pressures.
引文
[1] International Energy Agency I E. Energy technology perspectives2012:pathways to a clean energy system[R]. France:InternationalEnergy Agency, 2012.
    [2] GU Shuaiwei,GAO Beibei,TENG Lin,et al. Monte carlosimulation of supercritical carbon dioxide adsorption in carbon slitpores[J]. Energy&Fuels,2017,31(9):9717-9724.
    [3]郭晓明,毛东森,卢冠忠,等. CO2加氢合成甲醇催化剂的研究进展[J].化工进展,2012,31(3):477-488.GUO Xiaoming,MAO Dongsen,LU Guanzhong,et al. Progress incatalysts for methanol synthesis from CO2hydrogenation[J].Chemical Industry and Engineering Progress,2012,31(3):477-488.
    [4]喻健良,郑阳光,闫兴清,等.工业规模CO2管道大孔泄漏过程中的射流膨胀及扩散规律[J].化工学报,2017,68(6):2298-2305.YU Jianliang,ZHENG Yangguang,YAN Xingqing,et al. Under-expanded jets and dispersion during big hole leakage of highpressure CO2pipeline in industrial scale[J]. CIESC Journal, 2017,68(6):2298-2305.
    [5] WAREING C J, FAIRWEATHE M, FALLE S A E G, et al.Validation of a model of gas and dense phase CO2jet releases forcarbon capture and storage application[J]. International Journal ofGreenhouse Gas Control, 2014, 20:254-271.
    [6]张大同,滕霖,李玉星,等.管输CO2焦耳-汤姆逊系数计算方法[J].油气储运, 2018(1):35-39.ZHANG Datong, TENG Lin, LI Yuxing, et al. A calculationmethod for Joule-Thomson coefficient of pipeline CO2[J]. Oil&Gas Storage and Transportation, 2018(1):35-39.
    [7] TENG Lin, ZHANG Datong, LI Yuxing, et al. Multiphase mixturemodel to predict temperature drop in highly choked conditions inCO2enhanced oil recovery[J]. Applied Thermal Engineering,2016, 108:670-679.
    [8] BUMB P, DESIDERI U, QUATTROCCHI F, et al. Cost optimizedCO2pipeline transportation grid:a case study from italianindustries[J]. World Academy of Science Engineering&Technology, 2011(58):138-145.
    [9]赵青,李玉星,李顺丽.超临界二氧化碳管道杂质对节流温降的影响[J].石油学报, 2016, 37(1):111-116.ZHAO Qing, LI Yuxing, LI Shunli. Influence of impurities inpipeline on the temperature drop of supercritical carbon dioxidethrottling[J]. Acta Petrolei Sinica, 2016, 37(1):111-116.
    [10] MAHGEREFTEH H, BROWN S, DENTON G. Modelling theimpact of stream impurities on ductile fractures in CO2pipelines[J]. Chemical Engineering Science, 2012, 74:200-210.
    [11]喻健良,郭晓璐,闫兴清,等.工业规模CO2管道泄放过程中的压力响应及相态变化[J].化工学报, 2015, 66(11):4327-4334.YU Jianliang, GUO Xiaolu, YAN Xingqing, et al. Pressureresponse and phase transition in process of CO2pipeline release inindustrial scale[J]. CIESC Journal, 2015, 66(11):4327-4334.
    [12] DRESCHER M, VARHOLM K, MUNKEJORD S T, et al.Experiments and modelling of two-phase transient flow duringpipeline depressurization of CO2with various N2compositions[J].Energy Procedia, 2014, 63:2448-2457.
    [13] KOEIJER G D, BORCH J H, DRESCHER M, et al. CO2transport-depressurization, heat transfer and impurities[J]. Energy Procedia,2011, 4(22):3008-3015.
    [14] KOORNNEEF J, SPRUIJT M, MOLAG M, et al. Uncertainties inrisk assessment of CO2pipelines[J]. Energy Procedia, 2009, 1(1):1587-1594.
    [15]喻健良,朱海龙,郭晓璐,等.超临界CO2管道减压过程中的热力学特性[J].化工学报, 2017, 68(9):3350-3357.YU Jianliang, ZHU Hailong, GUO Xiaolu, et al. Thermodynamicproperties during depressurization process of supercritical CO2pipeline[J]. CIESC Journal, 2017, 68(9):3350-3357.
    [16] AHMAD M, LOWESMITH B, KOEIJER G D, et al. COSHERjoint industry project:large scale pipeline rupture tests to studyCO2, release and dispersion[J]. International Journal ofGreenhouse Gas Control, 2015, 37:340-353.
    [17] XIE Qiyuan, TU Ran, JIANG Xi, et al. The leakage behavior ofsupercritical CO2flow in an experimental pipeline system[J].Applied Energy, 2014, 130(5):574-580.
    [18] LI Kang, ZHOU Xuejin, TU Ran, et al. The flow and heat transfercharacteristics of supercritical CO2leakage from a pipeline[J].Energy, 2014, 71(21):665-672.
    [19] LI Kang, ZHOU Xuejin, TU Ran, et al. An experimentalinvestigation of supercritical CO2accidental release from apressurized pipeline[J]. Journal of Supercritical Fluids, 2016, 107:298-306.
    [20] KOEIJER G D, BORCH J H, JAKOBSENB J, et al. Experimentsand modeling of two-phase transient flow during CO2pipelinedepressurization[J]. Energy Procedia, 2009, 1(1):683-689.
    [21] ZHOU X, LI K, TU R, et al. A modelling study of the multiphaseleakage flow from pressurised CO2pipeline[J]. Journal ofHazardous Materials, 2016, 306:286-294.
    [22] BOTROS K K, GEERLIGS J, ROTHWELL B, et al. Effects ofargon as the primary impurity in anthropogenic carbon dioxide mixtures on the decompression wave speed[J]. Canadian Journal ofChemical Engineering, 2016, 95(3):440-448.
    [23]冯文兴,王兆芹,程五一.高压输气管道小孔与大孔泄漏模型的比较分析[J].安全与环境工程, 2009, 16(4):108-110.FENG Wenxing, WANG Zhaoqin, CHEN Wuyi. Analysis of thenozzle model and hole model associated with high-pressurenatural gas pipeline leakage[J]. Safety Environmental Engineering,2009, 16(4):108-110.
    [24]霍春勇,董玉华,余大涛,等.长输管线气体泄漏率的计算方法研究[J].石油学报, 2004, 25(1):101-105.HUO Chunyong, DONG Yuhua, YU Datao, et al. Estimation ofaccidental gas release flow rate in long transmission pipelines[J].Acta Petrolei Sinica, 2004, 25(1):101-105.
    [25]杨昭,张甫仁,赖建波.非等温长输管线稳态泄漏计算模型[J].天津大学学报(自然科学与工程技术版), 2005, 38(12):1115-1121.YANG Zhao, ZHANG Fureng, LAI Jianbo. Steady leakagecalculation models of non-isothermal long gas pipeline[J]. Journalof Tianjin University, 2005, 38(12):1115-1121.
    [26] PHAM L H H P, RUSLI R. A review of experimental andmodelling methods for accidental release behaviour of high-pressurised CO2pipelines at atmospheric environment[J]. ProcessSafety&Environmental Protection, 2016, 104:48-84.
    [27] MARTYNOV S, BROWN S, MAHGEREFTEH H, et al. Modellingthree-phase releases of carbon dioxide from high-pressurepipelines[J]. Process Safety&Environmental Protection, 2014, 92(1):36-46.
    [28] MUNKEJORD S T, HAMMER M. Depressurization of CO2-richmixtures in pipes:two-phase flow modelling and comparison withexperiments[J]. International Journal of Greenhouse Gas Control,2015, 37:398-411.
    [29]李康.小尺度超临界二氧化碳泄漏过程物理机理研究[D].合肥:中国科学技术大学, 2016.LI Kang. The physical mechanism of the supercritical CO2leakageprocess in small scale laboratory conditions[D]. Hefei:Universityof Science and Technology of China, 2016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700