植物叶缘锯齿发育的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Development of Plant Leaf Margin:Advances in Research
  • 作者:李晓屿 ; Ralf ; Müller-Xing ; Shahid ; Khan ; 郑玉彩 ; 李玉花 ; 邢倩
  • 英文作者:Li Xiaoyu;Ralf Müller-Xing;Shahid Khan;Zheng Yucai;Li Yuhua;Xing Qian;College of Life Sciences, Northeast Forestry University;
  • 关键词:叶缘锯齿 ; 叶片发育 ; 形态建成 ; 植物激素 ; CUC2 ; MicroRNA
  • 英文关键词:leaf margin serration;;leaf development;;morphogenesis;;plant hormone;;CUC2;;MicroRNA
  • 中文刊名:ZNTB
  • 英文刊名:Chinese Agricultural Science Bulletin
  • 机构:东北林业大学生命科学学院;
  • 出版日期:2019-01-05
  • 出版单位:中国农学通报
  • 年:2019
  • 期:v.35;No.508
  • 基金:黑龙江省自然科学基金项目“拟南芥叶片发育表观遗传学时空调控机制的研究”(C2016007)
  • 语种:中文;
  • 页:ZNTB201901010
  • 页数:7
  • CN:01
  • ISSN:11-1984/S
  • 分类号:57-63
摘要
叶缘锯齿是叶片重要的形态特征之一,受到多种叶缘发育因子的调控。笔者回顾了国内外研究成果,详细分析了植物激素、CUC2(CUP SHAPED COTYLEDONE2)和MicroRNA对叶缘锯齿发育的影响,总结了植物中各叶缘因子的表达与功能,并探讨了叶缘锯齿形成的分子机制及其意义。分析表明,在复杂的叶缘发育调控网络中,生长素与CUC2对叶缘的调控起到非常重要的作用,大部分叶缘因子的调控功能依赖于生长素和CUC2。最后,展望了叶缘锯齿发育未来的研究方向与发展趋势,并对其以后的应用领域进行了预测。
        Leaf margin serration is one of morphological characteristics, which is controlled by various leaf margin factors. We reviewed domestic and foreign research results, introduced in detail the effect of planthormone, CUC2(CUP SHAPED COTYLEDONE2) and MicroRNA on leaf margin serration development,summarized the expression and function of leaf margin factors, discussed the molecular mechanism andsignificance of leaf margin. Analysis showed that auxin and CUC2 had significant function in the leaf marginregulatory network and most leaf margin factors rely on auxin and CUC2. In the end, we proposed futureresearch direction of leaf margin serration development and forecasted its application fields.
引文
[1] Champagne C, Sinha N. Compound leaves:Equal to the sum of their parts[J]. Development,2004,131:4401-4412.
    [2] Nikovics K, Blein T, Peaucelle A, et al. The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis[J]. Plant Cell,2006,18(11):2929-2945.
    [3] Ferris K G, Rushton T, Greenlee A B, et al. Leaf shape evolution has a similar genetic architecture in three edaphic specialists within the Mimulus guttatus species complex[J]. Ann Bot,2015,116(2):213-223.
    [4] Vogel S. Leaves in the lowest and highest winds:Temperature,force and shape[J]. New phytol,2009,183:13-26.
    [5] Siso S, Camarero J J, Gil-Pelegrin E. Relationship between hydraulic resistance and leaf morphology in broadleaf Quercus species:a new interpretation of leaf lobation[J]. Trees,2001,15:341-345.
    [6] Semchenko M, Zobel K. The role of leaf lobation in elongation responses to shade in the rosette-forming forb Serratula tinctoria(Asteraceae)[J]. Ann Bot London,2007,100:83-90.
    [7]晏艺真,周坚华.基于叶缘特征的植物图像分类检索[J].华东师范大学学报,2015,4:154-163.
    [8] Dengler N G, Tsukaya H. Leaf morphogenesis in dicotyledons:current issues[J]. Int J Plant Sci,2001,162:459-464.
    [9] Holtan H E E, Hake S. Quantitative trait locus analysis of leaf dissection in tomato using Lycopersicon pennellii segmental introgression lines[J]. Genetics, 2003,165:1541-1550.
    [10] Barkoulas M, Galinha C, Grigg S P, et al. From genes to shape:regulatory interactions in leaf development[J]. Curr Opin Plant Biol,2007,10:660-666.
    [11] BenkováE, Michniewicz M, Sauer M, et al. Local, effluxdependent auxin gradients as a common module for plant organ formation[J]. Cell,2003,115:591-602.
    [12] Kepinski S, Leyser O. Plant development:auxin in loops[J]. Curr Biol,2005,15:208-210.
    [13] Barkoulas M, Hay A, Kougioumoutzi E, et al. A developmental framework for dissected leaf formation in the Arabidopsis relative Cardamine hirsuta[J]. Nat Genet,2008,40:1136-1141.
    [14] Koenig D, Bayer E, Kang J, et al. The Plant Cell, Auxin patterns Solanum lycopersicum leaf morphogenesis[J]. Development,2009,136:3997-3006.
    [15] Kawamura E, Horiguchi G. Tsukaya H. Mechanisms of leaf tooth formation in Arabidopsis[J]. Plant J,2010,62(3):429-441.
    [16] Kasprzewska A, Carter R, Swarup R, et al. Auxin influx importers modulate serration along the leaf margin[J]. Plant J,2015,83(4):705-718.
    [17] Tang Y, Zhao C Y, Tan S T, et al. Arabidopsis Type II Phosphatidylinositol 4-Kinase PI4Kγ5 Regulates Auxin Biosynthesis and Leaf Margin Development through Interacting with Membrane-Bound Transcription Factor ANAC078[J]. PLoS Genet,2016,12(8):e1006252.
    [18] Bilsborough G D, Runions A, Barkoulas M, et al. Model for the regulation of Arabidopsis thaliana leaf margin development[J]. Proc Natl Acad Sci USA,2011,108(8):3424-3429.
    [19] G?lweiler L, Guan C, Müller A, et al. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue[J]. Science,1998,282:2226-2230.
    [20] Blilou I, Xu J, Wildwater M, et al. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots[J].Nature,2005,433:39-44.
    [21] Petrásek J, Friml J. Auxin transport routes in plant development[J].Development,2009,136(16):2675-2688.
    [22] Zhou C, Han L, Hou C, et al. Developmental analysis of a Medicago truncatula smooth leaf margin1 mutant reveals contextdependent effects on compound leaf development[J]. Plant Cell,2011,23(6):2106-2124.
    [23]邓岩,王兴春,杨淑华,等.细胞分裂素:代谢、信号转导、交叉反应与农艺性状改良[J].植物学通报,2006,23(5):478-498.
    [24] Dello Ioio R, Galinha C, Fletcher A G, et al. A PHABULOSA/cytokinin feedback loop controls root growth in Arabidopsis[J].Curr Biol,2012,22(18):1699-1704.
    [25] Shani E, Ben-Gera H, Shleizer-Burko S, et al. Cytokinin regulates compound leaf development in tomato[J]. Plant Cell,2010,22(10):3206-3217.
    [26] Rupp H M, Frank M, Werner T, et al. Increased steady state m RNA levels of the STM and KNAT1 homeobox genes in cytokinin overproducing Arabidopsis thaliana indicate a role for cytokinins in the shoot apical meristem[J]. Plant J,1999,18(5):557-563.
    [27] Jasinski S, Tattersall A, Piazza P, et al. PROCERA encodes a DELLA protein that mediates control of dissected leaf form in tomato[J]. Plant J,2008,56(4):603-612.
    [28] Fleishon S, Shani E, Ori N, et al. Negative reciprocal interactions between gibberellin and cytokinin in tomato[J]. New Phytol,2011,190(3):609-617.
    [29] Yamaguchi S. Gibberellin metabolism and its regulation[J]. Annu Rev Plant Biol,2008,59:225-251.
    [30] Hay A, Kaur H, Phillips A, et al. The gibberellin pathway mediates KNOTTED1-type homeobox function in plants with different body plans[J]. Curr Biol,2002,12(18):1557-1565.
    [31] Yanai O, Shani E, Russ D, et al. Gibberellin partly mediates LANCEOLATE activity in tomato[J]. Plant J,2011,68(4):571-582.
    [32] Aida M, Ishida T, Fukaki H, et al. Genes involved in organ separation in Arabidopsis:an analysis of the cup-shaped cotyledon mutant[J]. Plant Cell,1997,9:841-857.
    [33] Vroemen C W, Mordhorst A P, Albrecht C, et al. The CUPSHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis[J]. Plant Cell,2003,15:1563-1577.
    [34] Hibara K, Karim M R, Takada S, et al. Arabidopsis CUP-SHAPED COTYLEDON3 regulates postembryonic shoot meristem and organ boundary formation[J]. Plant Cell,2006,18:2946-2957.
    [35] Hasson A, Plessis A, Blein T, et al. Evolution and diverse roles of the CUP-SHAPED COTYLEDON genes in Arabidopsis leaf development[J]. Plant Cell,2011,23(1):54-68.
    [36] Reinhart B J, Weinstein E G, Rhoades M W, et al. MicroRNAs in plants[J]. Genes Dev,2002,16(13):1616-1626.
    [37] Baker C C, Sieber P, Wellmer F, et al. The early extra petals1mutant uncovers a role for microRNA mi R164c in regulating petal number in Arabidopsis[J]. Curr Biol,2005,15(4):303-315.
    [38] Mallory A C, Dugas D V, Bartel D P, et al. MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs[J].Curr Biol,2004,14(12):1035-1046.
    [39] Laufs P, Peaucelle A, Morin H, et al. MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems[J]. Development,2004,131(17):4311-4322.
    [40] Larue C T, Wen J, Walker J C. A microRNA-transcription factor module regulates lateral organ size and patterning in Arabidopsis[J].Plant J,2009,58(3):450-463.
    [41] Koyama T, Sato F, Ohme-Takagi M. Roles of mi R319 and TCP Transcription Factors in Leaf Development[J]. Plant Physiol.2017,175(2):874-885.
    [42] Palatnik J F, Wollmann H, Schommer C, et al. Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs mi R159 and mi R319[J]. Developmental Cell,2007,13(1):115-125.
    [43] Chitwood D H, Sinha N R. Plant development:small RNAs and the metamorphosis of leaves[J]. Curr Biol,2014,24(22):R1087-R1089.
    [44] Ohno C K, Reddy G V, Heisler M G, et al. The Arabidopsis JAGGED gene encodes a zinc finger protein that promotes leaf tissue development[J]. Development,2004,131:1111-1122.
    [45] Palatnik J F, Allen E, Wu X, et al. Control of leaf morphogenesis by microRNAs[J]. Nature,2003,425:257-263.
    [46]李婉莎,王春涛,胡向阳.拟南芥叶边缘锯齿状突变体的分离与鉴定[J].植物分类与资源学报,2012,34(1):28-32.
    [47] Rubio-Somoza I, Zhou C M, Confraria A, et al. Temporal control of leaf complexity by miRNA-regulated licensing of protein complexes[J]. Curr Biol,2014,24(22):2714-2719.
    [48] Torii K U, Mitsukawa N, Oosumi T, et al. The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats[J]. Plant Cell,1996,8(4):735-746.
    [49] TisnéS, Reymond M, Vile D, et al. Combined genetic and modeling approaches reveal that epidermal cell area and number in leaves are controlled by leaf and plant developmental processes in Arabidopsis[J]. Plant Physiol,2008,148(2):1117-1127.
    [50] Shpak E D, Lakeman M B, Torii K U. Dominant-negative receptor uncovers redundancy in the Arabidopsis ERECTA Leucine-rich repeat receptor-like kinase signaling pathway that regulates organ shape[J]. Plant Cell,2003,15(5):1095-1110.
    [51] Masle J, Gilmore S R, Farquhar G D. The ERECTA gene regulates plant transpiration efficiency in Arabidopsis[J]. Nature,2005,436:866-870.
    [52] Woodward C, Bemis S M, Hill E J, et al. Interaction of auxin and ERECTA in elaborating Arabidopsis inflorescence architecture revealed by the activation tagging of a new member of the YUCCA family putative flavin monooxygenases[J]. Plant Physiol,2005,139(1):192-203.
    [53] Borevitz J O, Maloof J N, Lutes J, et al. Quantitative trait loci controlling light and hormone response in two accessions of Arabidopsis thaliana[J]. Genetics,2002,160(2):683-696.
    [54] Ghandilyan A, Ilk N, Hanhart C, et al. A strong effect of growth medium and organ type on the identification of QTLs for phytate and mineral concentrations in three Arabidopsis thaliana RIL populations[J]. J Exp Bot,2009,60(5):1409-1425.
    [55] Chen M K, Wilson R L, Palme K, et al. ERECTA family genes regulate auxin transport in the shoot apical meristem and forming leaf primordia[J]. Plant Physiol,2013,162(4):1978-1991.
    [56] Tameshige T, Okamoto S, Tasaka M, et al. Impact of erecta mutation on leaf serration differs between Arabidopsis accessions[J]. Plant Signal Behav,2016,11(12):e1261231.
    [57] Richardson L G L, Torii K U. Take a deep breath:peptide signalling in stomatal patterning and differentiation[J]. J Exp Bot,2013,64:5243-5251.
    [58] Uchida N, Tasaka M. Regulation of plant vascular stem cells by endodermis-derived EPFL-family peptide hormones and phloemexpressed ERECTA-family receptor kinases[J]. J Exp Bot,2013,64:5335-5343.
    [59] Tameshige T, Okamoto S, Lee J S, et al. A Secreted Peptide and Its Receptors Shape the Auxin Response Pattern and Leaf Margin Morphogenesis[J]. Curr Biol,2016(16):30765-30765.
    [60] Hareven D, Gutfinger T, Parnis A, et al. The making of a compound leaf:genetic manipulation of leaf architecture in tomato[J]. Cell,1996,84:735-744.
    [61] Janssen B J, Lund L, Sinha N. Overexpression of a homeobox gene,Le T6, reveals indeterminate features in the tomato compound leaf[J]. Plant Physiol,1998,117:771-786.
    [62] Chuck G, Lincoln C, Hake S. KNAT1 induces lobed leaves with ectopic meristems when over expressed in Arabidopsis[J]. Plant Cell,1996,8:1277-1289.
    [63] Byrne M E, Barley R, Curtis M, et al. Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis[J]. Nature,2000,408:967-971.
    [64] Ori N, Eshed Y, Chuck G, et al. Mechanisms that control knox gene expression in the Arabidopsis shoot[J]. Development,2000,127:5523-5532.
    [65] Hay A, Barkoulas M, Tsiantis M. ASYMMETRIC LEAVES1 and auxin activities converge to repress BREVIPEDICELLUS expression and promote leaf development in Arabidopsis[J].Development,2006,133:3955-3961.
    [66] Piazza P, Bailey C D, Cartolano M, et al. Arabidopsis thaliana leaf form evolved via loss of KNOX expression in leaves in association with a selective sweep[J]. Current Biology,2010, 20,2223-2228.
    [67] Douglas S J, Chuck G, Dengler R E, et al. KNAT1 and ERECTA regulate inflorescence architecture in Arabidopsis[J]. Plant Cell,2002,14:547-558.
    [68] Engelhorn J, Reimer J J, Leuz I, et al. Development-related PcG target in the apex 4 controls leaf margin architecture in Arabidopsis thaliana[J]. Development,2012,139(14):2566-2575.
    [69] Prigge M J, Wagner D R. The Arabidopsis SERRATE gene encodes a zinc-finger protein required for normal shoot development[J].Plant Cell,2001,13:1263-1279.
    [70] Grigg S P, Canales C, Hay A, et al. SERRATE coordinates shoot meristem function and leaf axial patterning in Arabidopsis[J].Nature,2005,437:1022-1026.
    [71] Lobbes D, Rallapalli G, Schmidt D D, et al. SERRATE:a new player on the plant microRNA scene[J]. EMBO,2006,7(10):1052-1058.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700