合成支架在代谢工程中的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress on synthetic scaffold in metabolic engineering–a review
  • 作者:尹雪 ; 梁晨 ; 冯玥 ; 张贺 ; 王宇 ; 李玉花
  • 英文作者:Xue Yin;Chen Liang;Yue Feng;He Zhang;Yu Wang;Yuhua Li;College of Life Sciences, Northeast Forestry University;
  • 关键词:代谢工程 ; 合成支架 ; 途径酶共定位 ; 生物催化 ; 合成生物学
  • 英文关键词:metabolic engineering;;synthetic scaffold;;pathway enzyme co-localization;;biocatalysis;;synthetic biology
  • 中文刊名:SHWU
  • 英文刊名:Chinese Journal of Biotechnology
  • 机构:东北林业大学生命科学学院;
  • 出版日期:2018-10-18 10:41
  • 出版单位:生物工程学报
  • 年:2019
  • 期:v.35;No.243
  • 基金:中央高校基本科研业务费专项(No.2572016BA06);; 黑龙江省应用技术研究与开发计划(No.GY2016ZB0097);; 国家林业局“948”项目(No.2014-4-60)~~
  • 语种:中文;
  • 页:SHWU201903004
  • 页数:12
  • CN:03
  • ISSN:11-1998/Q
  • 分类号:28-39
摘要
代谢工程作为通过引入外源合成途径或改造优化代谢网络,进行高附加值的天然代谢产物生物合成的技术,已经得到广泛应用。但随着目标合成产物的结构日渐复杂,构建多基因的从头合成途径造成宿主生物代谢失衡与中间产物对宿主细胞产生毒害作用等一系列问题发生的可能性也随之增加。为解决这些问题合成支架策略应运而生,合成支架将途径酶共定位以提高局部酶和代谢物的浓度,来增强代谢通量并限制中间产物与宿主细胞环境间的相互作用,成为生物催化和合成生物学研究的热点之一。尽管由核酸、蛋白质构成的合成支架策略已经应用于多种代谢物的异源合成,并取得了不同程度的成功,但合成支架的精确组装仍然是一项艰巨的任务。文中详细介绍了合成支架技术的研究现状,详细阐述了合成支架技术的原理和实例,并初步探讨了其应用前景。
        Metabolic engineering is a powerful tool to increase many valuable metabolites through enhancing endogenous pathways or introducing exogenous pathways from other organisms. As the complexity of the targeted structure increases,many problems arise when the host suffers from flux imbalance and some toxic effects. An emerging approach to solve these problems is the use of synthetic scaffolds to co-localize key enzymes and metabolites of the synthetic pathways, enhance the metabolic flux and limit the interaction between intermediate products in the host cell. Although many scaffolds made of proteins and nucleic acids have been explored and applied to a variety of research to the heterogeneous synthesis of multiple metabolites, success is rather limited. The precise assembly of synthetic scaffolds remains a difficult task. In this review, we summarized the application of synthetic scaffolds in metabolic engineering, and outlined the main principle of scaffold designs, then highlighted the current challenges in their application.
引文
[1]Zhou YJ,Buijs NA,Zhu ZW,et al.Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories.Nat Commun,2016,7:11709.
    [2]Zhuang Y,Yang GY,Chen XH,et al.Biosynthesis of plant-derived ginsenoside Rh2 in yeast via repurposing a key promiscuous microbial enzyme.Metab Eng,2017,42:25-32.
    [3]Yan X,Fan Y,Wei W,et al.Production of bioactive ginsenoside compound K in metabolically engineered yeast.Cell Res,2014,24(6):770-773.
    [4]Galanie S,Thodey K,Trenchard IJ,et al.Complete biosynthesis of opioids in yeast.Science,2015,349(6252):1095-1100.
    [5]Li YR,Li SJ,Thodey K,et al.Complete biosynthesis of noscapine and halogenated alkaloids in yeast.Proc Natl Acad Sci USA,2018,201721469,doi:10.1073/pnas.1721469115.
    [6]Nicolaou SA,Gaida SM,Papoutsakis ET.Acomparative view of metabolite and substrate stress and tolerance in microbial bioprocessing:from biofuels and chemicals,to biocatalysis and bioremediation.Metab Eng,2010,12(4):307-331.
    [7]Conrado RJ,Varner JD,Delisa MP.Engineering the spatial organization of metabolic enzymes:mimicking nature’s synergy.Curr Opin Biotechnol,2008,19(5):492-499.
    [8]Bülow L,Ljungcrantz P,Mosbach K.Preparation of a soluble bifunctional enzyme by gene fusion.Nat Biotechnol,1985,3(9):821-823.
    [9]Ljungcrantz P,Carlsson H,Mansson MO,et al.Construction of an artificial bifunctional enzyme,beta-galactosidase/galactose dehydrogenase,exhibiting efficient galactose channeling.Biochemistry,1989,28(22):8786-8792.
    [10]Orita I,Sakamoto N,Kato N,et al.Bifunctional enzyme fusion of 3-hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase.Appl Microbiol Biotechnol,2007,76(2):439-445.
    [11]Zhao FL,Bai P,Liu T,et al.Optimization of a cytochrome P450 oxidation system for enhancing protopanaxadiol production in Saccharomyces cerevisiae.Biotechnol Bioeng,2016,113(8):1787-1795.
    [12]Bakkes PJ,Riehm JL,Sagadin T,et al.Engineering of versatile redox partner fusions that support monooxygenase activity of functionally diverse cytochrome P450s.Sci Rep,2017,7(1):9570.
    [13]Han JY,Song JM,Seo SH,et al.Ty1-fused protein-body formation for spatial organization of metabolic pathways in Saccharomyces cerevisiae.Biotechnol Bioeng,2018,115(3):694-704.
    [14]Chang HC,Kaiser CM,Hartl FU,et al.De novo folding of GFP fusion proteins:high efficiency in eukaryotes but not in bacteria.J Mol Biol,2005,353(2):397-409.
    [15]Netzer WJ,Hartl FU.Recombination of protein domains facilitated by co-translational folding in eukaryotes.Nature,1997,388(6640):343-349.
    [16]Christensen T,Amiram M,Dagher S,et al.Fusion order controls expression level and activity of elastin-like polypeptide fusion proteins.Protein Sci,2009,18(7):1377-1387.
    [17]Lee H,Deloache WC,Dueber JE.Spatial organization of enzymes for metabolic engineering.Metab Eng,2012,14(3):242-251.
    [18]Siu KH,Chen RP,Sun Q,et al.Synthetic scaffolds for pathway enhancement.Curr Opin Biotechnol,2015,36:98-106.
    [19]Whitaker WR,Dueber JE.Metabolic pathway flux enhancement by synthetic protein scaffolding.Methods Enzymol,2011,497:447-468.
    [20]Delebecque CJ,Silver PA,Lindner AB.Designing and using RNA scaffolds to assemble proteins in vivo.Nat Protoc,2012,7(10):1797-1807.
    [21]Fu JL,Yang YR,Johnson-Buck A,et al.Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm.Nat Nanotechnol,2014,9(7):531-536.
    [22]Fu JL,Liu MH,Liu Y,et al.Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures.J Am Chem Soc,2012,134(12):5516-5519.
    [23]Delebecque CJ,Lindner AB,Silver PA,et al.Organization of intracellular reactions with rationally designed RNA assemblies.Science,2011,333(6041):470-474.
    [24]Conrado RJ,Wu GC,Boock JT,et al.DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency.Nucleic Acids Res,2012,40(4):1879-1889.
    [25]Hyde CC,Ahmed SA,Padlan EA,et al.Three-dimensional structure of the tryptophan synthaseα2β2 multienzyme complex from Salmonella typhimurium.J Biol Chem,1988,263(33):17857-17871.
    [26]Thoden JB,Holden HM,Wesenberg G,et al.Structure of carbamoyl phosphate synthetase:a journey of 96?from substrate to product.Biochemistry,1997,36(21):6305-6316.
    [27]Krahn JM,Kim JH,Burns MR,et al.Coupled formation of an amidotransferase interdomain ammonia channel and a phosphoribosyltransferase active site.Biochemistry,1997,36(37):11061-11068.
    [28]Miles EW,Rhee S,Davies DR.The molecular basis of substrate channeling.J Biol Chem,1999,274(18):12193-12196.
    [29]Bayer EA,Belaich JP,Shoham Y,et al.The cellulosomes:multienzyme machines for degradation of plant cell wall polysaccharides.Ann Rev Microbiol,2004,58(1):521-554.
    [30]Doi RH,Kosugi A.Cellulosomes:plant-cell-wall-degrading enzyme complexes.Nat Rev Microbiol,2004,2(7):541-551.
    [31]Tsai SL,Oh J,Singh S,et al.Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production.Appl Environ Microbiol,2009,75(19):6087-6093.
    [32]You C,Myung S,Zhang YHP.Facilitated substrate channeling in a self-assembled trifunctional enzyme complex.Angew Chem Int Ed,2012,51(35):8787-8790.
    [33]Liu F,Banta S,Chen W.Functional assembly of a multi-enzyme methanol oxidation cascade on a surface-displayed trifunctional scaffold for enhanced NADH production.Chem Commun,2013,49(36):3766-3768.
    [34]Hirakawa H,Nagamune T.Molecular assembly of P450with ferredoxin and ferredoxin reductase by fusion to PCNA.Chembiochem,2010,11(11):1517-1520.
    [35]Hirakawa H,Kakitani A,Nagamune T.Introduction of selective intersubunit disulfide bonds into self-assembly protein scaffold to enhance an artificial multienzyme complex’s activity.Biotechnol Bioeng,2013,110(7):1858-1864.
    [36]Dueber JE,Wu GC,Malmirchegini GR,et al.Synthetic protein scaffolds provide modular control over metabolic flux.Nat Biotechnol,2009,27(8):753-759.
    [37]Moon TS,Dueber JE,Shiue E,et al.Use of modular,synthetic scaffolds for improved production of glucaric acid in engineered E.coli.Metab Eng,2010,12(3):298-305.
    [38]Agapakis CM,Ducat DC,Boyle PM,et al.Insulation of a synthetic hydrogen metabolism circuit in bacteria.J Biol Eng,2010,4:3.
    [39]Baek JM,Mazumdar S,Lee SW,et al.Butyrate production in engineered Escherichia coli with synthetic scaffolds.Biotechnol Bioeng,2013,110(10):2790-2794.
    [40]Wang YC,Yu O.Synthetic scaffolds increased resveratrol biosynthesis in engineered yeast cells.JBiotechnol,2012,157(1):258-260.
    [41]Gao X,Yang S,Zhao CC,et al.Artificial multienzyme supramolecular device:highly ordered self-assembly of oligomeric enzymes in vitro and in vivo.Angew Chem Int Ed Engl,2015,53(51):14027-14030.
    [42]Zhao CC,Gao X,Liu XB,et al.Enhancing biosynthesis of a ginsenoside precursor by self-assembly of two key enzymes in Pichia pastoris.J Agric Food Chem,2016,64(17):3380-3385.
    [43]Yang ZW,Gao X,Xie H,et al.Enhanced itaconic acid production by self-assembly of two biosynthetic enzymes in Escherichia coli.Biotechnol Bioeng,2016,114(2):457-462.
    [44]Somasundaram S,Eom GT,Hong SH.Efficient malic acid production in Escherichia coli using a synthetic scaffold protein complex.Appl Biochem Biotechnol,2017,184(4):1308-1318.
    [45]Zhang L,Lu Y,Zhong YQ.Affibody molecules:a new class of ligands with high affinity.J Int Pharm Res,2012,39(2):127-131(in Chinese).张磊,鲁莹,钟延强.Affibody分子:一类具有高度亲和力的新配体.国际药学研究杂志,2012,39(2):127-131.
    [46]Tippmann S,Anfelt J,David F,et al.Affibody Scaffolds improve sesquiterpene production in Saccharomyces cerevisiae.ACS Synth Biol,2016,6(1):19-28.
    [47]Shetty RP,Endy D,Knight Jr TF.Engineering biobrick vectors from biobrick parts.J Biol Eng,2008,2:5.
    [48]Jaeger L,Chworos A.The architectonics of programmable RNA and DNA nanostructures.Curr Opin Struc Biol,2006,16(4):531-543.
    [49]Rothemund PW.Folding DNA to create nanoscale shapes and patterns.Nature,2006,440(7082):297-302.
    [50]Douglas SM,Dietz H,Liedl T,et al.Self-assembly of DNA into nanoscale three-dimensional shapes.Nature,2010,459(7245):414-418.
    [51]Han DR,Pal S,Nangreave J,et al.DNA origami with complex curvatures in three-dimensional space.Science,2011,332(6027):342-346.
    [52]Zhang F,Jiang SX,Wu SY,et al.Complex wireframe DNA origami nanostructures with multi-arm junction vertices.Nat Nanotechnol,2015,10(9):779-784.
    [53]Zuker M.Mfold web server for nucleic acid folding and hybridization prediction.Nucleic Acids Res,2003,31(13):3406-3415.
    [54]Zadeh JN,Steenberg CD,Bois JS,et al.NUPACK:Analysis and design of nucleic acid systems.JComput Chem,2011,32(1):170-173.
    [55]Andronescu M,Aguirre-Hernandez R,Condon A,et al.RNAsoft:a suite of RNA secondary structure prediction and design software tools.Nucleic Acids Res,2003,31(13):3416-3422.
    [56]Douglas SM,Marblestone AH,Teerapittayanon S,et al.Rapid prototyping of 3D DNA-origami shapes with caDNAno.Nucleic Acids Res,2009,37(15):5001-5006.
    [57]Castro CE,Kilchherr F,Kim DN,et al.A primer to scaffolded DNA origami.Nat Methods,2011,8(3):221-229.
    [58]Williams S,Lund K,Lin CX,et al.Tiamat:a three-dimensional editing tool for complex DNAstructures//Goel A,Simmel FC,Sosík P,eds.DNAComputing.New York:Springer Berlin Heidelberg,2008,5347:90-101.
    [59]Pinheiro AV,Han DR,Shih WM,et al.Challenges and opportunities for structural DNA nanotechnology.Nat Nanotechnol,2011,6(12):763-772.
    [60]Linko V,Dietz H.The enabled state of DNAnanotechnology.Curr Opin Biotechnol,2013,24(4):555-561.
    [61]Wilner OI,Shimron S,Weizmann Y,et al.Self-assembly of enzymes on DNA scaffolds:en route to biocatalytic cascades and the synthesis of metallic nanowires.Nano Lett,2009,9(5):2040-2043.
    [62]Wilner OI,Weizmann Y,Gill R,et al.Enzyme cascades activated on topologically programmed DNA scaffolds.Nat Nanotechnol,2009,4(4):249-254.
    [63]Fu JL,Yang YR,Dhakal S,et al.Assembly of multienzyme complexes on DNA nanostructures.Nat Protoc,2016,11(11):2243-2273.
    [64]Numajiri K,Yamazaki T,Kimura M,et al.Discrete and active enzyme nanoarrays on DNA origami scaffolds purified by affinity tag separation.J Am Chem Soc,2010,132(29):9937-9939.
    [65]Erkelenz M,Kuo CH,Niemeyer CM.DNA-mediated assembly of cytochrome P450 BM3 subdomains.JAm Chem Soc,2011,133(40):16111-16118.
    [66]Sun Q,Chen W.HaloTag mediated artificial cellulosome assembly on a rolling circle amplification DNA template for efficient cellulose hydrolysis.Chem Commun,2016,52(40):6701-6704.
    [67]Kou BB,Chai YQ,Yuan YL,et al.PtNPs as scaffolds to regulate interenzyme distance for construction of efficient enzyme cascade amplification for ultrasensitive electrochemical detection of MMP-2.Anal Chem,2017,89(17):9383-9387.
    [68]Negi S,Imanishi M,Matsumoto M,et al.New redesigned zinc-finger proteins:design strategy and its application.Cheminform,2008,39(30):3236-3249.
    [69]Lee JH,Jung SC,Le MB,et al.Improved production of L-threonine in Escherichia coli by use of a DNAscaffold system.Appl Environ Microbiol,2013,79(3):774-782.
    [70]Chen Q,Yu S,Myung N,et al.DNA-guided assembly of a five-component enzyme cascade for enhanced conversion of cellulose to gluconic acid and H2O2.J Biotechnol,2017,263:30-35.
    [71]Sun Q,Madan B,Tsai SL,et al.Creation of artificial cellulosomes on DNA scaffolds by zinc finger protein-guided assembly for efficient cellulose hydrolysis.Chem Commun,2014,50(12):1423-1425.
    [72]Zhu LY,Qiu XY,Zhu LY,et al.Spatial organization of heterologous metabolic system in vivo based on TALE.Sci Rep,2016,6:26065.
    [73]Sachdeva G,Garg A,Godding D,et al.In vivo co-localization of enzymes on RNA scaffolds increases metabolic production in a geometrically dependent manner.Nucleic Acids Res,2014,42(14):9493-9503.
    [74]Shao M,Sha Z,Zhang X,et al.Efficient androst-1,4-diene-3,17-dione production by co-expressing3-ketosteroid-Δ1-dehydrogenase and catalase in Bacillus subtilis.J Appl Microbiol,2017,122(1):119-128.
    [75]Jones JA,Toparlak?D,Koffas MAG.Metabolic pathway balancing and its role in the production of biofuels and chemicals.Curr Opin Biotechnol,2015,33:52-59.
    [76]Ahmadi MK,Pfeifer BA.Recent progress in therapeutic natural product biosynthesis using Escherichia coli.Curr Opin Biotechnol,2016,42:7-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700