用户名: 密码: 验证码:
H_2O分子对MTO反应过程中甲醇活化和乙烯脱除反应的影响(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Theoretical Study on Effect of H_2O on Activation of Methanol and Elimination of Ethene During MTO Reaction
  • 作者:李对春 ; 邢斌 ; 刘红艳 ; 刘平 ; 李瑞丰 ; 王宝俊
  • 英文作者:LI Duichun;XING Bin;LIU Hongyan;LIU Ping;LI Ruifeng;WANG Baojun;College of Chemistry and Chemical Engineering,Taiyuan University of Technology;Key Laboratory of CoalScience and Technology of Ministry of Education and Shanxi Province,Taiyuan University of Technology;College of Chemistry and Chemical Engineering,Shanxi Datong University;Institute of Coal Chemistry,Chinese Academy of Science;International Cooperation Section,Taiyuan University of Technology;
  • 关键词:密度泛函理论 ; SAPO-34分子筛 ; MTO反应 ; 反应活性
  • 英文关键词:density functional theory;;SAPO-34 zeolite;;MTO reaction;;reaction activity
  • 中文刊名:MTZH
  • 英文刊名:Coal Conversion
  • 机构:太原理工大学化学化工学院;太原理工大学煤科学与技术教育部和山西省重点实验室;山西大同大学化学与环境工程学院;中国科学院山西煤炭化学研究所;太原理工大学国际合作处;
  • 出版日期:2019-03-15
  • 出版单位:煤炭转化
  • 年:2019
  • 期:v.42;No.168
  • 基金:Project(51172154)supported by the National Natural Science Foundation of China
  • 语种:英文;
  • 页:MTZH201902009
  • 页数:11
  • CN:02
  • ISSN:14-1163/TQ
  • 分类号:57-67
摘要
为了研究H_2O分子在MTO反应过程中的作用,采用色散力矫正的密度泛函理论方法进行了系统性的计算,构建了周期性的SAPO-34分子筛的结构模型,其骨架类型为CHA,包含36个T位,研究了H_2O和CH_3OH分子在酸性位点上的竞争吸附,结果表明:H_2O分子会优先吸附在酸性位点。在MTO反应乙烯消除反应步骤中,H_2O分子在乙烯的消除和分子筛酸性位点还原过程中起到了协同作用。
        Systematic periodic computations including dispersion correction(GGA-PBE-D2)based on density functional theory have been carried out to study the effect of H_2O molecule on the methanol to olefin(MTO)reaction.The SAPO-34 model of CHA framework type containing 36 Tsites is used.The competition adsorption of H_2O and CH_3OH molecules on the acidic site is studied,and H_2O molecule will be adsorbed at the acidic site firstly.For the reaction step of the elimination of C_2H_4 molecule in MTO reaction,H_2O acts the synergistic role in the elimination of C_2H_4 molecule and regeneration of zeolite acidic site.
引文
[1]STOCKER Michael.Methanol-to-hydrocarbons:Catalytic Materials and Their Behavior[J].Microporous and Mesoporous Materials,1999,29(1):3-48.
    [2]KEIL Frerich J.Methanol-to-hydrocarbons:Process Technology[J].Microporous and Mesoporous Materials,1999,29(1):49-66.
    [3]TRAA Yvonne.Is a Renaissance of Coal Imminent?-Challenges for Catalysis[J].Chemical Communications,2010,46(13):2175-2187.
    [4]HAW James F,MARCUS David M.Well-defined(supra)Molecular Structures in Zeolite Methanol-to-olefin Catalysis[J].Topics in Catalysis,2005,34(1):41-48.
    [5]HAW James F,SONG Weiguo,MARCUS David M,et al.The Mechanism of Methanol to Hydrocarbon Catalysis[J].Accounts of Chemical Research,2003,36(5):317-326.
    [6]CHEN John Q,BOZZANO Andrea,GLOVER Bryan,et al.Recent Advancements in Ethylene and Propylene Production Using the UOP/Hydro MTO Process[J].Catalysis Today,2005,106(1):103-107.
    [7]PARK Ji Won,LEE Jae Youl,KIM Kwang Soo,et al.Effects of Cage Shape and Size of 8-membered Ring Molecular Sieves on Their Deactivation in Methanol-to-olefin(MTO)Reactions[J].Applied Catalysis A:General,2008,339(1):36-44.
    [8]LIU Guangyu,TIAN Peng,ZHANG Ying,et al.Synthesis of SAPO-34Templated by Diethylamine:Crystallization Process and Si Distribution in the Crystals[J].Microporous and Mesoporous Materials,2008,114(1):416-423.
    [9]LIU Guangyu,TIAN Peng,LI Jinzhe,et al.Synthesis,Characterization and Catalytic Properties of SAPO-34Synthesized Using Diethylamine as a Template[J].Microporous and Mesoporous Materials,2008,111(1):143-149.
    [10]DESSAU R M.On the H-ZSM-5Catalyzed Formation of Ethylene from Methanol or Higher Olefins[J].Journal of Catalysis,1986,99(1):111-116.
    [11]DESSAU R M,LAPIERRE R B.On the Mechanism of Methanol Conversion to Hydrocarbons over HZSM-5[J].Journal of Catalysis,1982,78(1):136-141.
    [12]MOLE Tom,WHITESIDE Judith A,SEDDON Duncan.Aromatic Co-catalysis of Methanol Conversion over Zeolite Catalysts[J].Journal of Catalysis,1983,82(2):261-266.
    [13]DAHL Ivar M,KOLBOE Stein.On the Reaction Mechanism for Hydrocarbon Formation from Methanol over SAPO-34(2):Isotopic Labeling Studies of the Co-reaction of Propene and Methanol[J].Journal of Catalysis,1996,161(1):304-309.
    [14]DAHL I M,KOLBOE S.On the Reaction Mechanism for Hydrocarbon Formation from Methanol over SAPO-34(I):Isotopic Labeling Studies of the Co-reaction of Ethene and Methanol[J].Journal of Catalysis,1994,149(2):458-464.
    [15]DAHL Ivar M,KOLBOE Stein.On the Reaction Mechanism for Propene Formation in the MTO Reaction over SAPO-34[J].Catalysis Letters,1993,20(3):329-336.
    [16]MARCUS David M,MCLACHLAN Kelly A,WILDMAN Mark A,et al.Experimental Evidence from H/D Exchange Studies for the Failure of Direct C-C Coupling Mechanisms in the Methanol-to-olefin Process Catalyzed by HSAPO-34[J].Angewandte Chemie International Edition,2006,45(19):3133-3136.
    [17]LESTHAEGHE David,VAN SPEYBROECK Veronique,MARIN Guy B,et al.Understanding the Failure of Direct C-CCoupling in the Zeolite-catalyzed Methanol-to-olefin Process[J].Angewandte Chemie International Edition,2006,45(11):1714-1719.
    [18]WEI Zhihong,CHEN Yanyan,WANG Sen,et al.A Review on the Mechanism for the Catalytic Conversion of Methanol over Acid Molecular Sieves[J].Journal of Fuel Chemistry and Technology,2013,41(8):897-910.
    [19]ARSTAD Bjrnar,KOLBOE Stein.The Reactivity of Molecules Trapped Within the SAPO-34Cavities in the Methanol-tohydrocarbons Reaction[J].Journal of the American Chemical Society,2001,123(33):8137-8138.
    [20]SONG Weiguo,HAW James F,NICHOLAS John B,et al.Methylbenzenes Are the Organic Reaction Centers for Methanolto-olefin Catalysis on HSAPO-34[J].Journal of the American Chemical Society,2000,122(43):10726-10727.
    [21]SONG Weiguo,FU Hui,HAW James F.Supramolecular Origins of Product Selectivity for Methanol-to-olefin Catalysis on HSAPO-34[J].Journal of the American Chemical Society,2001,123(20):4749-4754.
    [22]WANG Chuanming,WANG Yangdong,XIE Zaiku.Insights into the Reaction Mechanism of Methanol-to-olefins Conversion in HSAPO-34from First Principles:Are Olefins Themselves the Dominating Hydrocarbon Pool Species?[J].Journal of Catalysis,2013,301:8-19.
    [23]WANG Chuanming,WANG Yangdong,DU Yujue,et al.Similarities and Differences Between Aromatic-based and Olefinbased Cycles in H-SAPO-34and H-SSZ-13for Methanol-to-olefins Conversion:Insights from Energetic Span Model[J].Catalysis Science&Technology,2015,5(9):4354-4364.
    [24]DE WISPELAERE Kristof,WONDERGEM Caterina S,ENSING Bernd,et al.Insight into the Effect of Water on the Methanol-to-olefins Conversion in H-SAPO-34from Molecular Simulations and Insitu Microspectroscopy[J].ACS Catalysis,2016,6(3):1991-2002.
    [25]MARCHI A J,FROMENT G F.Catalytic Conversion of Methanol to Light Alkenes on SAPO Molecular Sieves[J].Applied Catalysis,1991,71(1):139-152.
    [26]WU Xianchun,ANTHONY R G.Effect of Feed Composition on Methanol Conversion to Light Olefins over SAPO-34[J].Applied Catalysis A:General,2001,218(1):241-250.
    [27]DE WISPELAERE Kristof,HEMELSOET Karen,WAROQUIER Michel,et al.Complete Low-barrier Side-chain Route for Olefin Formation During Methanol Conversion in H-SAPO-34[J].Journal of Catalysis,2013,305:76-80.
    [28]WANG Chuanming,WANG Yangdong,XIE Zaiku.Verification of the Dual Cycle Mechanism for Methanol-to-olefin Conversion in HSAPO-34:a Methylbenzene-based Cycle from DFT Calculations[J].Catalysis Science&Technology,2014,4(8):2631-2638.
    [29]CHAN Bun,RADOM Leo.A Computational Study of Methanol-to-hydrocarbon Conversion-Towards the Design of a Lowbarrier Process[J].Canadian Journal of Chemistry,2010,88(8):866-876.
    [30]ARSTAD Bjrnar,KOLBOE Stein,SWANG Ole.Theoretical Investigation of Arene Alkylation by Ethene and Propene over Acidic Zeolites[J].The Journal of Physical Chemistry B,2004,108(7):2300-2308.
    [31]KRESSE G,FURTHMLLER J.Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set[J].Computational Materials Science,1996,6(1):15-50.
    [32]KRESSE G,FURTHMLLER J.Efficient Iterative Schemes for Ab initio Total-energy Calculations Using a Plane-wave Basis Set[J].Physical Review B,1996,54(16):11169-11186.
    [33]BLCHL P E.Projector Augmented-wave Method[J].Physical Review B,1994,50(24):17953-17979.
    [34]KRESSE G,JOUBERT D.From Ultrasoft Pseudopotentials to the Projector Augmented-wave Method[J].Physical Review B,1999,59(3):1758-1775.
    [35]PERDEW John P,BURKE Kieron,ERNZERHOF Matthias.Generalized Gradient Approximation Made Simple[J].Physical Review Letters,1996,77(18):3865-3868.
    [36]GRIMME Stefan,ANTONY Jens,EHRLICH Stephan,et al.A Consistent and Accurate Ab initio Parametrization of Density Functional Dispersion Correction(DFT-D)for the 94Elements H-Pu[J].Journal of Chemical Physics,2010,132(15):154104.
    [37]MONKHORST Hendrik J,PACK James D.Special Points for Brillouin-zone Integrations[J].Physical Review B,1976,13(12):5188-5192.
    [38]BAERLOCHER Ch,MCCUSKER L B.Database of Zeolite Structures:http://www.iza-structure.org/databases/.
    [39]KARWACKI L,STAVITSKI E,KOX MHF,et al.Intergrowth Structure of Zeolite Crystals as Determined by Optical and Fluorescence Microscopy of the Template-removal Process[J].Angewandte Chemie International Edition,2007,46(38):7228-7231.
    [40]WANG Chuanming,WANG Yangdong,XIE Zaiku,et al.Methanol to Olefin Conversion on HSAPO-34Zeolite from Periodic Density Functional Theory Calculations:a Complete Cycle of Side Chain Hydrocarbon Pool Mechanism[J].Journal of Physical Chemistry C,2009,113(11):4584-4591.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700