无资料或少资料区河流流量监测与定量反演
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A method estimating natural runoff in regions with none or less data
  • 作者:李甲振 ; 郭新蕾 ; 巩同梁 ; 王静 ; 王涛 ; 李慧
  • 英文作者:LI Jiazhen;GUO Xinlei;GONG Tongliang;WANG Jing;WANG Tao;LI Hui;State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin,China Institute of Water Resources and Hydropower Research;Tibet Water Resources Bureau;Tibet Hydrology and Water Resources Investigation Bureau;General Institute of Water Resources and Hydropower Planning and Design;
  • 关键词:河流流量 ; 反演 ; 过流断面 ; 水力分析 ; 水面宽
  • 英文关键词:runoff;;estimation;;cross-section;;hydraulic analysis;;water surface width
  • 中文刊名:SLXB
  • 英文刊名:Journal of Hydraulic Engineering
  • 机构:中国水利水电科学研究院流域水循环模拟与调控国家重点实验室;西藏自治区水利厅;西藏自治区水文水资源勘测局;水利部水利水电规划设计总院;
  • 出版日期:2018-11-22 15:22
  • 出版单位:水利学报
  • 年:2018
  • 期:v.49;No.506
  • 基金:国家重点研发计划课题(2016YFC0401808);; 国家自然科学基金项目(51609265,51679263);; 中国水科院基本科研业务费项目(HY0145C222018);; 公益性行业科研专项(201501025)
  • 语种:中文;
  • 页:SLXB201811011
  • 页数:9
  • CN:11
  • ISSN:11-1882/TV
  • 分类号:113-121
摘要
河流流量是流域水循环和水文计算的关键因素,受复杂地形、恶劣气候或经济、政治等因素的影响,无资料或少资料区水文站点的建设、维护和流量测量极为困难。为解决上述问题,将常见的河道过流断面概化为三角形断面和幂函数型断面两种形态,通过水力分析建立水面宽与流量函数关系的一般表达式,结合实时、高效、观测范围广和数据量大的遥测技术,提出了一种适用于无资料或少资料区的、水力学与遥感相耦合的径流反演方法,并基于模型实验和野外实测资料对提出的方法进行了校验。根据模型实验水面宽反演的56组流量,相对误差平均值为18.77%;其中,40组数据与实测流量的相对误差小于20%,占比为71.43%。根据野外实测水面宽反演的流量,相对误差平均值为20.71%;其中,64.66%的数据与实测流量的相对误差小于20%,86.03%的相对误差小于30%。本文提出的方法能够较为准确地反演河流流量,为无资料或少资料区径流的实时高效监测提供了一种解决方案。
        Natural runoff is a key element for water cycle in river basin and hydrological calculation.Due to complex terrain,terrible weather,economic constraint or political effect,construction and management of hydrometric stations and discharge measurement is a rather tough thing in regions with none or less data.To solve this problem,river cross-section is initially classified as triangular-type and power-law-type,and then,according to hydraulic analysis,a regular formula associating water surface width and discharge has been deduced for both types.Combining remote sensing technique of real-time,efficient,large-scale and mass-data characteristics,a discharge estimating method for regions with none or less data has been presented.Further,it was tested with model experiment and field data.The results show that,for 56groups of estimated discharge in experiments,the averaged relative error is 18.77%and the number that less than 20%is 40,whose ratio is 71.43%.For the estimated discharge according to field data,the averaged relative error is 20.71%.The ratio of relative error less than 20%is 64.66%,while that less than30%is 86.03%.It indicates that the proposed method is an effective and accurate way to estimate natural runoff,providing a solution for discharge estimation in regions with none or less data.
引文
[1] V?R?SMARTY C J,MCINTYRE P B,GESSNER M O,et al. Global threats to human water security and river biodiversity[J]. Nature,2010,467:555-561.
    [2] GARAMBOIS P,MONNIER J. Inference of effective river properties from remotely sensed observations of water surface[J]. Advances in Water Resources,2015,79:103-120.
    [3] BJERKLIE D M,MOLLER D,SMITH L C,et al. Estimating discharge in rivers using remotely sensed hydraulic information[J]. Journal of Hydrology,2005,309(1):191-209.
    [4] BJERKLIE D M,DINGMAN S L,VOROSMARTY C J,et al. Evaluating the potential for measuring river discharge from space[J]. Journal of Hydrology,2003,278:17-38.
    [5]杨胜天,刘昌明,杨志峰,等.南水北调西线调水工程区的自然生态环境评价[J].地理学报,2002,57(1):11-18.
    [6] GLEASON C,GARAMBOIS P A,DURAND M. Tracking river flows from space[Z]. EOS,2017,98.
    [7] RANTZ S E. Measurement and computation of streamflow[R]. Washington:USGS,1982.
    [8] LEOPOLD L B,MADDOCK R T. The hydraulic geometry of stream channels and some physiographic implications[R]. Washington:USGS,1953.
    [9] DINGMAN S L,SHARMA K P. Statistical development and validation of discharge equations for natural channels[J]. Journal of Hydrology,1997,199:13-35.
    [10] PARK C C. World-wide variations in hydraulic geometry exponents of stream channels:an analysis and some observations[J]. Journal of Hydrology,1977,39(1):133-146.
    [11] GLEASON C J,SMITH L C. Toward global mapping of river discharge using satellite images and at-many-stations hydraulic geometry[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(13):4788-4791.
    [12] GLEASON C J,WANG J. Theoretical basis for at-many-stations hydraulic geometry[J]. Geophysical Research Letters,2015,42(17):7107-7114.
    [13] HARMAN C,STEWARDSON M,DEROSE R. Variability and uncertainty in reach bankfull hydraulic geometry[J]. Journal of Hydrology,2008,351(1):13-25.
    [14] AFSHARI S,FEKETE B M,DINGMAN S L,et al. Statistical filtering of river survey and streamflow data for improving at-a-station hydraulic geometry relations[J]. Journal of Hydrology,2017,547:443-454.
    [15] PAVELSKY T M. Using width-based rating curves from spatially discontinuous satellite imagery to monitor river discharge[J]. Hydrological Processes,2014,28(6):3035-3040.
    [16]吴保生,李凌云.黄河下游河道横断面的若干特点[J].人民黄河,2008,30(2):15-16.
    [17]马元旭,许炯心.无定河及其各支流的断面水力几何形态[J].地理研究,2009,28(2):345-353.
    [18]冉立山,王随继,范小黎,等.黄河上游河道水力几何形态关系分析[J].人民黄河,2009,31(6):38-41.
    [19]赵春红,高建恩.坡面不同侵蚀沟断面特征及水力几何形态[J].水科学进展,2016,27(1):22-30.
    [20] STRELKOFF T S,CLEMMENS A J. Approximating wetted perimeter in power-law cross section[J]. Journal of Irrigation&Drainage Engineering,2000,126(2):98-109.
    [21] FERGUSON R I. Hydraulics and hydraulic geometry[J]. Progress in Physical Geography,1986,10(1):1-31.
    [22] BARNES H H. Roughness characteristics of natural channels[R]. Washington:U.S. Geological Survey Water-Supply Paper 1849,1967.
    [23]吴持恭.水力学[M].北京:高等教育出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700