粤东莲花山断裂带高山寨钨多金属矿床流体包裹体研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:STUDY OF FLUID INCLUSIONS OF THE GAOSHANZHAI TUNGSTEN POLYMETALLIC DEPOSIT IN LIANHUASHAN FAULT ZONE,EASTERN GUANGDONG PROVINCE
  • 作者:丁志磊 ; 陈正乐 ; 王晓虎 ; 潘家永 ; 张文高 ; 周荣德
  • 英文作者:DING Zhilei;CHEN Zhengle;WANG Xiaohu;PAN Jiayong;ZHANG Wengao;ZHOU Rongde;School of Earth Sciences,East China University of Technology;Institute of Geomechanics,Chinese Academy of Geological Sciences;Geology Bureau for Nonferrous Metals of Guangdong Province 931 Battalion;
  • 关键词:流体包裹体 ; 成矿流体 ; 高山寨钨矿 ; 莲花山 ; 粤东
  • 英文关键词:fluid inclusion;;ore-forming fluid;;Gaoshanzhai tungsten deposit;;Lianhuashan;;eastern Guangdong
  • 中文刊名:KWYS
  • 英文刊名:Journal of Mineralogy and Petrology
  • 机构:东华理工大学地球科学学院;中国地质科学院地质力学研究所;广东省有色金属地质局931队;
  • 出版日期:2019-03-25
  • 出版单位:矿物岩石
  • 年:2019
  • 期:v.39;No.155
  • 基金:地质调查项目(D20160053);; 中央基本科研业务费项目(YYWF201614);; 国家自然科学基金青年基金(41302067)
  • 语种:中文;
  • 页:KWYS201901002
  • 页数:8
  • CN:01
  • ISSN:51-1143/TD
  • 分类号:9-16
摘要
高山寨钨多金属矿床处于粤东梅州地区,位于莲花山断裂带的北西侧,属新华夏系第二个隆起褶皱带南段与南岭东西复杂构造带南缘交接复合部位。研究基于详细的岩相学观察,对该矿床含矿石英脉中的10个石英包裹体片中流体包裹体进行显微测温和激光拉曼光谱分析,从而为探讨其流体性质及成矿机制提供依据。通过研究分析,该矿床主要有五种类型流体包裹体,分别为:富液相、富气相、纯液相、纯气相以及含CO_2三相流体包裹体。选取富液相流体包裹体和少量的含CO_2三相流体包裹体进行测温。据温度测试结果推测,石英中的流体包裹体经历至少两次流体活动。富液相流体包裹体均一温度分布较广(156℃~380℃),可分为低温区间(181℃~240℃)、高温区间(261℃~338℃);含CO_2三相流体包裹体的均一温度(290℃~347℃)与富液相的流体包裹体均一温度高温区间的较为一致,但三相流体包裹体盐度(0.4%~4.9%)低于富液相包裹体(1.2%~12.5%)。从本次实验结果推测高山寨钨矿床成矿机制为:在成矿流体演化过程中,高温阶段发生流体沸腾作用,导致部分金属矿物发生沉淀;低温阶段成矿流体经历了自然冷却作用及与低温低盐度的流体混合作用,导致金属矿物沉淀富集成矿。
        The Gaoshanzhai tungsten polymetallic deposit on northwestern side of the Lianhuashan fault zone in Meizhou area of eastern Guangdong Province occurs at the conjunction position of the second uplift fold belt of the Neocathaysian and the southern margin of Nanling E-W complex tectonic belt.On the basis of petrographic observation,the fluid inclusions in quartz of the ore-bearing vein are analyzed by microthermometry and Laser Raman Spectroscopy so as to provide the basis for discussing the fluid property and metallogenic mechanism.Five types of fluid inclusions are determined by the analysis,including rich liquid phase,rich gas phase,pure liquid phase,pure gas phase and CO_2-bearing three phase fluid inclusions.The temperature measurement objects are mainly liquid-rich inclusions,with a small amount of CO_2-bearing three phase inclusions.It shows that there are at least two stage fluid activities in the mining area.The liquid-rich fluid inclusions have relatively wide range of homogeneous temperature distribution(156 ℃~380 ℃),which can be divided into low temperature range(181 ℃~240 ℃) and high temperature range(261 ℃~338 ℃).Homogenization temperature of the CO_2-bearing three-phase fluid inclusions(290 ℃~347 ℃) is the same as that of the liquid-rich fluid inclusions,but the salinity of CO_2-bearing three phase inclusions(0.4%~4.9%)is lower than that of the liquid-rich inclusions(1.2%~12.5%).It is considered that during the evolution of ore-forming fluids in the Gaoshanzhai tungsten deposit,the fluid boiling occurred in the high temperature stage and then resulted in the precipitation of partial metal minerals.At the low temperature stage,the ore-forming fluid experienced the effect of natural cooling and the mix with the low-temperature and low-salinity fluid and resulted in the enrichment of metal mineral precipitation.
引文
[1] 徐克勤,朱金初.华南锡钨矿床的时空分布和成矿控制[A].锡矿地质讨论会论文集[C].北京:地质出版社,1987.
    [2] 华仁民,陈培荣,张文兰,等.论华南地区中生代3次大规模成矿作用[J].矿床地质,2005,24(2):99-107.
    [3] 李武显.浙闽沿海地区晚中生代火成岩成因及构造制约[D].南京:南京大学,1999.
    [4] 陈毓川,裴荣富,张宏良.南岭地区与中生代花岗岩有关的有色及稀有金属矿床地质[M].北京:地质出版社,1989,1-260.
    [5] 舒良树,华南构造演化的基本特征[J].地质通报,2012,31(7):1 035-1 053.
    [6] 徐晓春.粤东地区中生代岩浆作用和金属成矿的地球化学研究[D].合肥:合肥工业大学,1993.
    [7] 于振锋,程日辉,许中杰,等.广东海丰地区下侏罗统长埔组浅海沉积与前陆构造背景[J].沉积学报,2012,30(2):251-263.
    [8] Roedder E.Fluid inclusions[J].Mineralogical Society of America,Reviews in Mineralogy,1984,12:644.
    [9] 卢焕章,范宏瑞,倪培,等.流体包裹体[M].北京:科学出版社,2004,406-419.
    [10] Hall D L,Sterner S M,Bodnar R J.Freezing point depression of NaCl-KCl-H2O solutions[J].Economic Geology,1988,83:197-202.
    [11] Shepherd T J,Rakin A,Alderton D H M.A Practical Guide to Fluid Inclusion Studies[M].Blackie&Son,1985,1-154.
    [12] Beuchat S,Moritz R,Pettke T.Fluid evolution in the W-Cu-Zn-Pb San Cristobal vein,Peru:Fluid inclusion and stable isotope evidence[J].Chemical Geology, 2004,2(10):201-224.
    [13] 王旭东,倪培,蒋少涌,等.赣南漂塘钨矿流体包裹体研究[J].岩石学报,2008,24(9):2 163-2 170.
    [14] Naumov V,Dorofeev V A,Mironova O F.Physicochemical parameters of the formation of hydrothermal deposits:A fluid inclusion study.I.tin and tungsten deposits[J].Geochemistry International,2011,4(10):1 002-1 021.
    [15] 胡东泉,华仁民,李光来,等.赣南茅坪钨矿流体包裹体研究[J].高校地质学报,2011,17(2):327-336.
    [16] Yang Y F,Li Nuo,Chen Y J.Fluid inclusion study of the Nannihu giant porphyry Mo-W deposit,Henan Province,China:Implications for the nature of porphyry ore-fluid systems formed in a continental collision setting[J].Ore Geology Reviews,2012,46:83-94.
    [17] Zhu M B,Tan H Y,He D H, et al.Geochemical characteristics of Maoping tungsten-tin deposit granite in Jiangxi Province[J].Non-Ferrous Metal(Mine Section),2012,64(5):34-39.
    [18] 黄诚,李晓峰,王立发,等.湖南黄沙坪多金属矿床流体包裹体研究[J].岩石学报,2013,29(12):4 232-4 244.
    [19] Mohamed Abdel-Moneim M.Evolution of mineralizing fluids of cassiterite-wolframite and fluorite deposits from Mueilha tin mine area,eastern desert of Egypt,evidence from fluid inclusion[J].Arabian Journal of Geosciences,2013,6:775-782.
    [20] Moura A,Dória A,Neiva A M R, et al.Metallogenesis at the Carris W-Mo-Sn deposit(Gerês,Portugal):Constraints from fluid inclusions,mineral geochemistry,Re-Os and He-Ar isotopes[J].Ore Geology Reviews,2014,56:73-93.
    [21] 蔡建明,刘若兰,曾广胜.江西盘古山钨矿流体包裹体及其与成矿关系研究[A]//余鸿彰.钨矿地质讨论会论文集[C].北京:地质出版社,1981,1-11.
    [22] Chi Qinghua,Yan Mingcai.Manual of applied geochemistry element abundance[M].Beijing:Geological Publishing House,2007,101-102.
    [23] Shi Yingxia ,Li Nuo,Yang Yan.Ore geology and fluid inclusion geochemistry of the Sandaozhuang Mo-W deposit in LuanchuanCounty,Henan Province[J].Acta Petrologica Sinica,2009,25(10),2 575-2 587.
    [24] Wood S A.Experimental determination of the solubility of WO3(s) and the thermodynamic properties of H2WO4(aq) in the range 300~600 ℃ at 1 kbar:Calculation of scheelite salability[J].Geochim Cosmochim Acta,1992,56:1 827-1 836.
    [25] Drummond,S E,Ohmoto H.Chemical evolution and mineral deposition in boiling hydrothermal systems[J].Economic Geology,1985,80:126-147.
    [26] Higgins N C,Kerrich R.Progressive 18O depletion during CO2 separation from a carbon dioxide-rich hydrothermal fluid:Evidence from the Grey River tungsten deposit,Newfoundland[J].Canadian Journal of Earth Science,1982,19(12):2 247-2 257.
    [27] 张德会.流体的沸腾和混合在热液成矿中的意义[J].地球科学进展,1997,12(6):546-552.
    [28] 谢海鹰.陕西双王金矿床成矿流体地球化学特征与成矿机制[D].北京:中国地质大学,2011.
    [29] Wood S A,Samson I M.The hydrothermal geochemistry of Tungsten in environments:I.Relative solubilities of Ferber and scheelite as a function of the T,P,PH,and MNacl[J].Economic Geology,2000,95:143-182.
    [30] Ramboz C,Schnapper D,Dubessy J.The P-V-T-X-fO2 evolution of H2O-CO2-CH4-bearing fluid in a wolframite vein:Reconstruction from fluid inclusion studies[J].Geochimica Acta, 1985,49(1):205-219.
    [31] Higgins N C.Fluid inclusion evidence for the transport of tungsten by carbonate complexes in hydrothermal solutions[J].Canadian Journal of Earth Sciences, 1980,17:823-830.
    [32] 宋生琼,胡瑞忠,毕献武,等.赣南淘锡坑钨矿床流体包裹体地球化学研究[J].地球化学,2011,40(3):237-248.
    ①颜伦明,等.广东省五华县高山寨钨多金属矿详查报告.广东有色金属地质局931队内部资料,2016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700