磷化聚苯胺用量对复合涂层防腐蚀性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Phosphorized Polyaniline Content on Anticorrosion Properties of Composite Coatings
  • 作者:高晓辉 ; 李玉峰 ; 李继玉 ; 祝晶晶
  • 英文作者:GAO Xiao-hui;LI Yu-feng;LI Ji-yu;ZHU Jing-jing;College of Chemistry and Chemical Engineering,Qiqihar University;College of Materials Science and Engineering,Qiqihar University;
  • 关键词:聚苯胺 ; 磷化 ; 镁锂合金 ; 聚合物基复合材料 ; 腐蚀 ; 功能材料
  • 英文关键词:polyaniline;;phosphating;;Mg-Li alloy;;polymer-matrix composites;;corrosion;;functional materials
  • 中文刊名:JXHG
  • 英文刊名:Fine Chemicals
  • 机构:齐齐哈尔大学化学与化学工程学院;齐齐哈尔大学材料科学与工程学院;
  • 出版日期:2018-04-02 16:13
  • 出版单位:精细化工
  • 年:2018
  • 期:v.35
  • 基金:黑龙江省博士后科研启动金资助项目(LBH-Q13171)~~
  • 语种:中文;
  • 页:JXHG201806006
  • 页数:8
  • CN:06
  • ISSN:21-1203/TQ
  • 分类号:40-46+54
摘要
以植酸(Ph A)为掺杂剂,通过化学氧化法合成了一种磷化聚苯胺(P-PANI),并将其混入硅树脂(SiR)中,刷涂在镁锂(Mg-Li)合金表面制备了P-PANI/SiR复合防腐蚀涂层。采用FTIR、UV-Vis-NIR和XPS表征了P-PANI的结构;考察了P-PANI含量对复合涂层疏水性、附着力及防腐蚀性能的影响。结果表明:当P-PANI占SiR的质量分数为2.0%时,得到的复合涂层表现出较好的疏水性和防腐蚀性能。其水接触角为125.4?,复合涂层的干、湿附着力均为0级,腐蚀电流密度为5.15×10–10 A/cm~2,电化学阻抗值达到6.5×109?·cm~2。
        Phosphorized polyaniline(P-PANI) was synthesized by chemical oxide method with phytic acid(Ph A) as dopant,followed by mixed with silicon resin(SiR),and then coated on the surface of magnesiumlithium(Mg-Li) alloy to prepare P-PANI/SiR composite anticorrosion coatings. The structure of P-PANI was characterized by Fourier transform infrared spectroscopy(FTIR),ultraviolet-visible-near infrared spectroscopy(UV-Vis-NIR),and X-ray photoelectron spectroscopy(XPS). The effects of P-PANI content in composite coatings on the hydrophobicity,adhesion and anticorrosion properties of composite coatings were investigated. The results showed that the composite coating containing 2.0% P-PANI(based on the mass of SiR) had better hydrophobic property and anticorrosion performance. The water contact angle(CA) of the coating was 125.4?,the dry and wet adhesions of P-PANI/SiR composite coating were grade 0. The corrosion current density was 5.15×10–10 A/cm~2,and the electrochemical impedance value could reach 6.5×109 ?·cm~2.
引文
[1]Shao Y W,Huang H,Zhang T,et al.Corrosion protection of Mg–5Li alloy with epoxy coatings containing polyaniline[J].Corrosion Science,2009,51(12):2906–2915.
    [2]Kohl M,KalendováA.Effect of polyaniline salts on the mechanical and corrosion properties of organic protective coatings[J].Progress in Organic Coatings,2015,86:96-107.
    [3]Hao J J(郝建军),Li X(李新),Wang H(王昊).Effect of Zn2+doping on corrosion resistance of poiyaniline film prepared by electrochemical synthesis[J].Acta Materiae Compositae Sinica(复合材料学报),2014,31(4):1117-1120.
    [4]Siva T,Kamaraj K,Sathiyanarayanan S.Epoxy curing by polyaniline(PANI)–Characterization and self-healing evaluation[J].Progress in Organic Coatings,2014,77(6):1095-1103.
    [5]Yang X G(杨小刚),Wang L(王莉),Jin S Y(金思毅),et al.Synthesis and properties of polyaniline nanofibers secondary doped with phosphoric acid[J].Journal of Chemical Engineering of Chinese Universities(高校化学工程学报),2015,29(3):664-670.
    [6]Perrin F X,Phan T A,Nguyen D L.Preparation and characterization of polyaniline in reversed micelles of decylphosphonic acid for active corrosion protection coatings[J].European Polymer Journal,2015,66:253-265.
    [7]Gao Y Z,Syed J A,Lu H B,et al.Anti-corrosive performance of electropolymerized phosphomolybdic acid doped PANI coating on304SS[J].Applied Surface Science,2016,360:389-397.
    [8]Hernandez-alvarado L A,Hernandez L S,LomelíM A,et al.Phytic acid coating on Mg-based materials for biodegradable temporary endoprosthetic applications[J].Journal of Alloys and Compounds,2016,664:609-618.
    [9]Zhou Y,Ding C Y,Qian X R,et al.Further improvement of flame retardancy of polyaniline-deposited paper composite through using phytic acid as dopant or co-dopant[J].Carbohydrate Polymers,2015,115:670-676.
    [10]Santos L H E,Branco J S C,Guimar?es I S,et al.Synthesis in phytic acid medium and application as anticorrosive coatings of polyaniline-based materials[J].Surface&Coatings Technology,2015,275:26-31.
    [11]National Technical Committee on Paints&Pigments of Standardization Administration of China.GB/T 9286-1998 Paints and varnishes—Cross cut test for films[S].Beijing:Standards Press of China,1998(in Chinese).
    [12]Sheng X X,Cai W X,Zhong L,et al.Synthesis of functionalized graphene/polyaniline nanocomposites with effective synergistic reinforcement on anticorrosion[J].Industrial&Engineering Chemistry Research,2016,55:8576-8585.
    [13]Yan B,Chen Z H,Cai L,et al.Fabrication of polyaniline hydrogel:Synthesis,characterization and adsorption of methylene blue[J].Applied Surface Science,2015,356:39-47.
    [14]Mousavinejad T,Bagherzadeh M R,Akbarinezhad E,et al.A novel water-based epoxy coating using self-doped polyaniline-clay synthesized under supercritical CO2 condition for the protection of carbon steel against corrosion[J].Progress in Organic Coatings,2015,79:90-97.
    [15]Qiu B,Xu C X,Sun D Z,et al.Polyaniline coating with various substrates for hexavalent chromium removal[J].Applied Surface Science,2015,334:7-14.
    [16]Chen S N(陈山南).Factors influencing adhesion of coatings[J].Paint&Coating Industry(涂料工业),1983,13(1):21-25.
    [17]Li Y F,Zhu J J,Gao X H.Preparation and properties of waterborne polyaniline/versatate-fluoro-acrylate composite anticorrosion coatings[J].Acta Materiae Compositae Sinica,2016,33(9):1859-1867.
    [18]Luo Y Z,Sun Y,Lv J L,et al.Transition of interface oxide layer from porous Mg(OH)2 to dense Mg O induced by polyaniline and corrosion resistance of Mg alloy therefrom[J].Applied Surface Science,2015,328:247-254.
    [19]Gao H F,Zhang S T,Liu C L,et al.Phytic acid conversion coating on AZ31B magnesium alloy[J].Surface Engineering,2012,28(5):387-392.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700