导向管喷动流化床内宽筛分硅颗粒流化特性的实验及模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experiment and simulation on the flow characteristics of silicon particles with a wide size distribution in draft tube spout-fluid bed
  • 作者:张月梅 ; 黄国强 ; 苏国良
  • 英文作者:ZHANG Yuemei;HUANG Guoqiang;SU Guoliang;School of Chemical Engineering and Technology,Tianjin University;
  • 关键词:导向管喷动流化床 ; 宽粒度分布 ; 气体旁路 ; 两相流 ; 计算流体力学 ; 数值模拟 ; 实验验证
  • 英文关键词:draft tube spout-fluid bed;;wide size distribution;;gas bypassing;;two-phase flow;;computational fluid dynamics(CFD);;numerical simulation;;experimental validation
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:天津大学化工学院;
  • 出版日期:2017-04-12 16:11
  • 出版单位:化工进展
  • 年:2017
  • 期:v.36;No.310
  • 基金:国家自然科学基金项目(21676197)
  • 语种:中文;
  • 页:HGJZ201707007
  • 页数:12
  • CN:07
  • ISSN:11-1954/TQ
  • 分类号:50-61
摘要
在内径为182mm的导向管喷动流化床中,以亚毫米级的宽筛分硅颗粒为物料,对喷动气旁路特性进行了实验研究,分别考察了静止床层高度、夹带区高度、导向管内径、喷动气速和流化气速对喷动气旁路分率的影响。结果表明喷动气的旁路分率随喷动气速的增加首先保持平稳,随后降低直至保持稳定值;当喷动气速较小时,旁路分率随静止床层高度的增加而增加,当喷动气速足够大时,静止床高的变化对旁路分率影响不大;此外,喷动气旁路分率随流化气速、导向管内径的增加而增大,但随着导向管安装高度的增加而减小。同时,采用基于颗粒动力学理论的双欧拉模型,通过Fluent建立了与冷态实验条件一致的导向管喷动流化床气固两相流的数理模型,经计算流体力学模拟考察了相关参数对模拟结果的影响。结果表明压降与实验值吻合,流态化外观也与实验结果一致。所建立的模型具有一定的准确性和可靠性,可以成为预测实验结果的有效途径。
        A cylindrical spout-fluid bed(182mm in inner diameter)equipped with a draft tube and loaded with sub-millimeter grade silicon particles of wide size distribution was used to study the gas bypassing fraction of spouting gas. Effects of static bed height,entrainment zone height,draft tube diameter,and the spouting and fluidizing gas velocity on the gas bypassing fraction of spouting gas were investigated. The results show that the gas bypassing fraction of spouting gas remains stable at low spouting gas velocities and decreases thereafter. At high spouting gas velocities,it reaches a stable value. At low spouting gas velocities,the gas fraction increases with the static bed height. When the spouting gas velocity is sufficiently high,the static bed height has little effect on the gas bypassing. In addition,the gas fraction increases with the fluidizing gas velocity and the draft tube diameter,but decreases with the entrainment zone height. Furthermore,a mathematical model for gas-particle two-phase flow in draft tube spout-fluid bed was established based on the Eulerian-Eulerian model according to the kinetic theory of granular flow. Effects of related parameters on simulation results were investigated by CFD simulation. The numerical simulation shows that both the calculated bed pressure drop and fluidization appearance show good agreement with the experimental results. Regarding applicability and reliability of the proposed model,it could be an effective tool to predict the experimental results.
引文
[1]蒋荣华,肖顺珍.国内外多晶硅发展现状[J].半导体技术,2001,26(11):7-10.JIANG R H,XIAO S Z.Development and trend of international and internal polycrystal Si material[J].Semiconductor Technology,2001,26(11):7-10.
    [2]HSU G,ROHATGI N,HOUSEMAN J.Silicon particle growth in a fluidized-bed reactor[J].AICh E Journal,1987,33(5):784-791.
    [3]LAI S,DUDUKOVIC M P,RAMACHANDRAN P A.Chemical vapor deposition and homogeneous nucleation in fluidized bed reactors:silicon from silane[J].Chemical Engineering Science,1986,41(4):633-641.
    [4]UESAWA N,PENG S,INASAWA S,et al.Kinetic study on gas phase zinc reduction of silicon tetrachloride[J].Chemical Engineering Journal,2011,168(2):889-895.
    [5]SU G L,HUANG G Q,LI M,et al.Study on the flow behavior in spout-fluid bed with a draft tube of sub-millimeter grade silicon particles[J].Chemical Engineering Journal,2013,237:277-285.
    [6]陈涵斌,李育亮,印永祥.四氯化硅转化技术的现状与发展趋势[J].氯碱工业,2009,45(4):27-31.CHEN H B,LI Y L,YIN Y X.The present situation and development trend of conversion technology of silicon tetrachloride[J].Chlor-Alkali Industry,2009,45(4):27-31.
    [7]梁骏吾.兴建年产一千吨电子级多晶硅工厂的思考[J].中国工程科学,2000,2(6):33-35.LIANG J W.Thoughts on the construction of an electronic grade polycrystalline silicon plant with annual production of 1000t in China[J].Engineering Science,2000,2(6):33-35.
    [8]JU Y L,LEE W H,PARK Y K,et al.Catalytic conversion of silicon tetrachloride to trichlorosilane for a poly-Si process[J].Solar Energy Materials&Solar Cells,2012,105:142-147.
    [9]INGLE W M.Kinetics of the hydrogenation of silicon tetrachloride[J].Journal of the Electrochemical Society,1985,132(5):1236-1240.
    [10]宋佳,曹祖宾,李会鹏,等.四氯化硅固定床冷氢化工艺的研究[J].化学工业与工程,2011,28(3):20-24.SONG J,CAO Z B,LI H P,et al.Hydrogenation process of silicon tetrachloride on fixed bed[J].Chemical Industry and Engineering,2011,28(3):20-24.
    [11]SUGIURA M,KURITA H,NISIDA T,et al.Hydrogenation reactions and their kinetics for Si Cl4(g)-H2(g)and Si Cl4(g)-Si(s)-H2(g)systems using a fixed bed type reactor[J].Materials Transactions,1992,33(12):1138-1148.
    [12]万烨,汤传斌,肖荣辉,等.四氯化硅氢化生产三氯氢硅技术研究[J].有色冶金节能,2010,26(6):30-32.WAN Y,TANG C B,XIAO R H,et al.Research on technique of producing trichlorosilane by hydrogenation of silicon tetrachloride[J].Energy Saving of Non-Ferrous Metallurgy,2010,26(6):30-32.
    [13]靳凤民,陈松,康仕芳.导向管喷动流化床固体颗粒的循环量[J].天津大学学报,2008,41(1):123-126.JIN F M,CHEN S,KANG S F.Solids circulation of spout-fluid bed with draft tube[J].Journal of Tianjin University,2008,41(1):123-126.
    [14]LIM C J,WATKINSON A P,KHOE G K,et al.Spouted,fluidized and spout-fluid bed combustion of bituminous coals[J].Fuel,1988,67(9):1211-1217.
    [15]张东利,张维蔚,张晓蕾,等.带导流管的喷动流化床的研究进展[J].化工进展,2005,24(5):506-509.ZHANG D L,ZHANG W W,ZHANG X L,et al.Applied research on spout-fluidized bed with draft-tube[J].Chemical Industry and Engineering Progress,2005,24(5):506-509.
    [16]MARMO L.Low temperature drying of pomace in spout and spout-fluid beds[J].Journal of Food Engineering,2007,79(4):1179-1190.
    [17]FUKUMORI Y,ICHIKAWA H.Coating of pharmaceuticals and fluidized bed[J].Japanese Journal of Multiphase Flow,2004,18(3):214-222.
    [18]ZHONG W Q,XIAO R,ZHANG M Y.Experimental study of gas mixing in a spout-fluid bed[J].AICh E Journal,2006,52(3):924-930.
    [19]GRBAVCIC?B,VUKOVIC D V,JOVANOVIC S D,et al.Fluid flow pattern and solids circulation rate in a liquid phase spout-fluid bed with draft tube[J].The Canadian Journal of Chemical Engineering,1992,70(5):895-904.
    [20]ERBIL A C.Effect of the annulus aeration on annulus leakage and particle circulation in a three-phase spout-fluid bed with a draft tube[J].Powder Technology,2006,162(1):38-49.
    [21]NAGASHIMA H,KAWASHIRI Y,SUZUKAWA K,et al.Effects of operating parameters on hydrodynamic behavior of spout-fluid beds without and with a draft tube[J].Procedia Engineering,2015,102:952-958.
    [22]YANG W C,KEAIRNS D L.Studies on the solid circulation rate and gas bypassing in spouted fluid-bed with a draft tube[J].The Canadian Journal of Chemical Engineering,1983,61(3):349-355.
    [23]JEON J H,KIM S D,KIM S J,et al.Solid circulation and gas bypassing characteristics in a square internally circulating fluidized bed with draft tube[J].Chemical Engineering&Processing,2008,47(12):2351-2360.
    [24]WU M,GUO Q J,LIU L Y.Hydrodynamic performance of a spout-fluid bed with draft tube at different temperatures[J].Industrial&Engineering Chemistry Research,2014,53(5):1999-2010.
    [25]LINK J M,CUYPERS L A,DEEN N G,et al.Flow regimes in a spout-fluid bed:a combined experimental and simulation study[J].Chemical Engineering Science,2005,60(13):3425-3442.
    [26]XU J,TANG J L,WEI W S,et al.Minimum spouting velocity in a spout-fluid bed with a draft tube[J].The Canadian Journal of Chemical Engineering,2009,87(2):274-278.
    [27]MUIR J R,BERRUTI F,BEHIE L A.Solids circulation in spouted and spout-fluid beds with draft-tubes[J].Chemical Engineering Communications,1990,88(1):153-171.
    [28]NAGASHIMA H,ISHIKURA T,IDE M.Flow regimes and vertical solids conveying in a spout-fluid bed with a draft tube[J].The Canadian Journal of Chemical Engineering,2011,89(2):264-273.
    [29]XIAO R,ZHANG M Y,JIN B S,et al.Solids circulation flux and gas bypassing in a pressurized spout-fluid bed with a draft-tube[J].The Canadian Journal of Chemical Engineering,2002,80(5):800-808.
    [30]SHIH H H,CHU C Y,HWANG S J.Solids circulation and attrition rates and gas bypassing in an internally circulating fluidized bed[J].Industrial&Engineering Chemistry Research,2003,42(23):5915-5923.
    [31]GAUTHIER D,ZERGUERRAS S,FLAMANT G.Influence of the particle size distribution of powders on the velocities of minimum and complete fluidization[J].Chemical Engineering Journal,1999,74(3):181-196.
    [32]LI P,YU X,LIU F,et al.Hydrodynamic behaviors of an internally circulating fluidized bed with wide-size-distribution particles for preparing polysilicon granules[J].Powder Technology,2015,281:112-120.
    [33]LUO W C,LIANG W H,ZHANG G L,et al.Fluidization characteristics of silicon particles with a wide size distribution[J].Chinese Journal of Chemical Engineering,2004,12(6):851-856.
    [34]王伟文,董海红,陈光辉,等.气固流化床内宽筛分硅粉颗粒流化特性的数值模拟[J].高校化学工程学报,2011,25(2):276-282.WANG W W,DONG H H,CHEN G H,et al.Numerical simulation of the gas-solid flow characteristics in fluidized bed with wide particle size distribution[J].Journal of Chemical Engineering of Chinese Universities,2011,25(2):276-282.
    [35]李国兵,李明,陈松,等.导向管喷动流化床的喷动气旁路分率[J].化工学报,2013,64(4):1176-1182.LI G B,LI M,CHEN S,et al.Gas bypassing fraction of spouting gas in spout-fluid bed with draft tube[J].CIESC Journal,2013,64(4):1176-1182.
    [36]ERGUN S.Fluid flow through packed columns[J].Journal of Materials Science&Chemical Engineering,1952,48(2):89-94.
    [37]WEN Y C,YU Y H.Mechanics of fluidization[J].Chemical Engineering Progress Symposium Series,1966,62:100-111.
    [38]SCHILLER L,NAUMANN A.A drag coefficient correlation[J].Z.Ver.Deutsch.Ing.,1935,77(1):318-320.
    [39]张少峰,吴静,刘燕,等.双喷嘴矩形喷动床压降的实验研究[J].化工进展,2005,24(12):1405-1408.ZHANG S F,WU J,LIU Y,et al.Experimental study of pressure drop of rectangular spouted bed with double nozzles[J].Chemical Industry and Engineering Progress,2005,24(12):1405-1408.
    [40]肖睿,章名耀,刘向东.增压导向式喷动流化床颗粒循环量和气体旁路特性研究[J].燃料化学学报,1999,27(4):370-376.XIAO R,ZHANG M Y,LIU X D.Solid circulation and gas bypassing in spout-fluid bed with draft tube at elevated pressure[J].Journal of Fuel Chemistry and Technology,1999,27(4):370-376.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700