用户名: 密码: 验证码:
TC4合金增材制造的研究现状
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Current Status of TC4 Alloy Additive Manufacturing
  • 作者:李萌蘖 ; 李闯 ; 李绍宏
  • 英文作者:LI Mengnie;LI Chuang;LI Shaohong;Faculty of Materials Science and Engineering,Kunming University of Science and Technology;
  • 关键词:钛合金 ; 增材制造 ; 三维模型 ; 数值模拟
  • 英文关键词:titanium alloy;;additive manufacturing;;three-dimensional CAD model;;numerical simulation
  • 中文刊名:KMLG
  • 英文刊名:Journal of Kunming University of Science and Technology(Natural Science)
  • 机构:昆明理工大学材料科学与工程学院;
  • 出版日期:2018-12-15
  • 出版单位:昆明理工大学学报(自然科学版)
  • 年:2018
  • 期:v.43;No.217
  • 基金:国家自然科学基金项目(51761022);; 昆明理工大学分析测试基金(2017M20162230040)
  • 语种:中文;
  • 页:KMLG201806004
  • 页数:8
  • CN:06
  • ISSN:53-1223/N
  • 分类号:26-33
摘要
钛合金具有密度小、生物相容性好、综合力学性能优异、耐腐蚀性好等优点. TC4合金是最为常用的一种钛合金,广泛应用于医疗、航空航天等领域.传统制备工艺制造出来的钛合金零部件,存在成本高、材料收得率低、制造周期长等缺陷.增材制造技术能迅速把构造复杂的三维模型转化为实体零件,近年来得到快速发展.本文简要介绍增材制造技术的分类,TC4合金增材制造构件的微观组织、力学性能、显微缺陷,以及数值模拟在增材制造方面的应用,并展望未来发展方向.
        Titanium alloys possess the advantages of low density,good biocompatibility,excellent comprehensive mechanical properties,and corrosion resistance. TC4 is the most widely used titanium alloys in medical,aerospace,and other fields. Titanium alloy parts manufactured using traditional technologies suffer from disadvantages of high cost,low yield and long turn-around time among others. Additive manufacturing technologies allow rapid manufacturing of actual parts with shapes and dimensions prescribed in three-dimensional CAD models as input. Additive manufacturing has been subjected to extensive research and development in recent years. This article reviews various additive manufacturing technologies,microstructure,mechanical properties and defects of additive manufactured titanium alloy parts,numerical simulation of additive manufacturing processes,and needs for research in near future.
引文
[1] Yu Y,Zhang Y,Wang Q,et al. Effect of povidone-iodine deposition on tribocorrosion and antibacterial properties of titanium alloy[J]. Applied Surface Science,2016,363:432-438.
    [2] Choi B J,Kim Y J. Effect of reacted compounds in Al2O3+Ti investment mold on alpha-case formation for Ti casting[J].Metals&Materials International,2013,19(3):439-444.
    [3] Queheillalt D T,Wadley H N G. Titanium alloy lattice truss structures[J]. Materials&Design,2009,30(6):1966-1975.
    [4]刘全明,张朝晖,刘世锋,等.钛合金在航空航天及武器装备领域的应用与发展[J].钢铁研究学报,2015,27(3):1-4.
    [5] Balasubramanian M. Application of Box-Behnken design for fabrication of titanium alloy and 304 stainless steel joints with silver interlayer by diffusion bonding[J]. Materials&Design,2015,77(1):161-169.
    [6] Jha A K,Singh S K,Kiranmayee M S,et al. Failure analysis of titanium alloy(Ti6Al4V)fastener used in aerospace application[J]. Engineering Failure Analysis,2010,17(6):1457-1465.
    [7] Ryklina E P,Khmelevskaya I Y,Prokoshkin S D,et al. Effects of strain aging on two-way shape memory effect in a nickel-titanium alloy for medical application[J]. Materials Science&Engineering A,2006,438(15):1093-1096.
    [8] Niinomi M,Boehlert C J. Titanium Alloys for Biomedical Applications[M]. Advances in Metallic Biomaterials. Springer Berlin Heidelberg,2015:1269-1277.
    [9] Prima F,Sun F,Vermaut P,et al. High Performance Beta Titanium Alloys as a New Material Perspective for Cardiovascular Applications[C]//Materials Science Forum. 2012:578-583.
    [10] Cesaretti G,Dini E,Kestelier X D,et al. Building components for an outpost on the Lunar soil by means of a novel 3D printing technology[J]. Acta Astronautica,2014,93(1):430-450.
    [11] Gebler M,Uiterkamp A J M S,Visser C. A global sustainability perspective on 3D printing technologies[J]. Energy Policy,2014,74:158-167.
    [12] Melchels F P W,Domingos M A N,Klein T J,et al. Additive manufacturing of tissues and organs[J]. Progress in Polymer Science,2012,37(8):1079-1104.
    [13] Baufeld B,Biest O V D,Gault R. Additive manufacturing of Ti-6Al-4V components by shaped metal deposition microstructure and mechanical properties[J]. Materials&Design,2010,31(1):106-111.
    [14] Murr L E,Martinez E,Amato K N,et al. Fabrication of metal and alloy components by additive manufacturing:examples of3D materials science[J]. Journal of Materials Research&Technology,2012,1(1):42-54.
    [15] Bing-Henga L U,Di-Chenb L I. Development of the additive manufacturing 3D printing technology[J]. Machine Building&Automation,2013,42(4):1-4.
    [16] Labudovic M,Hu D,Kovacevic R. A three dimensional model for direct laser metal powder deposition and rapid prototyping[J]. Journal of Materials Science,2003,38(1):35-49.
    [17]汤慧萍,王建,逯圣路,等.电子束选区熔化成形技术研究进展[J].中国材料进展,2015,34(3):225-235.
    [18]董鹏,李忠华,严振宇,等.铝合金激光选区熔化成形技术研究现状[J].应用激光,2015(5):607-611.
    [19]章萍芝,张永忠,石力开,等.金属零件的激光直接成形研究[J].稀有金属,2001(2):114-117.
    [20] Deckard C R,Austin T X. Method and apparatus for producing parts by selective sintering:US4863538[P]. 1989-09-05.
    [21] Meiners W,Wissenbach K,Gasser A. Shaped body especially prototype or replacement part production:DE,DE19649865C1[P]. 1998.
    [22] Griffith M L,Keicher D M,Atwood C L. Free form fabrication of metallic components using laser engineered net shaping(LENS{trademark})[R]. Sandia National Labs.,Albuquerque,NM(United States),1996.
    [23] Wu X,Sharman R,Mei J,et al. Direct laser fabrication and microstructure of a burn-resistant Ti alloy[J]. Materials&Design,2002,23(3):239-247.
    [24] Mazumder J,Dutta D,Kikuchi N,et al. Closed loop direct metal deposition:art to part[J]. Optics&Lasers in Engineering,2000,34(4):397-414.
    [25] Arcella F G,Froes F H. Producing titanium aerospace components from powder using laser forming[J]. JOM,2000,52(5):28-30.
    [26]林鑫,黄卫东.应用于航空领域的金属高性能增材制造技术[J].中国材料进展,2015,34(9):684-688.
    [27]杨强,鲁中良,黄福享,等.激光增材制造技术的研究现状及发展趋势[J].航空制造技术,2016,507(12):26-31.
    [28] Breinan E M,Kear B H. Rapid solidification laser processing at high power density[J]. Materials Processing-Theory and Practices,1983,3:235-237.
    [29]葛江波,张安峰,李涤尘,等.激光金属直接成形DZ125L高温合金零件工艺的研究[J].中国激光,2011,38(7):119-125.
    [30] Zhang A F,Di-Chen L I,Bing-Heng L U. Research progress in laser direct metal rapid prototyping technology[J]. Ordnance Material Science&Engineering,2007,30(5):68-73.
    [31] Miranda R M,Lopes G,Quintino L,et al. Rapid prototyping with high power fiber lasers[J]. Materials&Design,2008,29(10):2072-2075.
    [32] Kumar S,Kruth J P. Composites by rapid prototyping technology[J]. Materials&Design,2010,31(2):850-856.
    [33]王华明.航空高性能金属结构件激光快速成形研究进展[R].北京,中国航空学会,2005.
    [34]卢秉恒,李涤尘.增材制造(3D打印)技术发展[J].机械制造与自动化,2013,42(4):1-4.
    [35]黄朝文,葛鹏,赵永庆,等.低温钛合金的研究进展[J].稀有金属材料与工程,2016(1):254-260.
    [36]杨森,钟敏霖,张庆茂,等.激光快速成型金属零件的新方法[J].激光技术,2001,25(4):254-257.
    [37] Wang H M. Materials fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica,2014,35(10):2690-2698.
    [38]林鑫,黄卫东.高性能金属构件的激光增材制造[J].中国科学:信息科学,2015,45(9):111-116.
    [39]陈静,杨海欧,杨健,等. TC4钛合金的激光快速成形特性及熔凝组织[J].中国材料进展,2004,23(4):33-37.
    [40]张霜银,林鑫,陈静,等.热处理对激光成形TC4合金组织及性能的影响[J].稀有金属材料与工程,2007,36(7):1263-1266.
    [41]张凤英,陈静,谭华,等.稀土钕对激光快速成形TC4合金组织及性能的影响[J].稀有金属材料与工程,2007,36(8):1420-1424.
    [42] Wu X,Liang J,Mei J,et al. Microstructures of laser-deposited Ti-6Al-4V[J]. Materials&design,2004,25(2):137-144.
    [43]高士友,张永忠,石力开,等.激光快速成型TC4钛合金的力学性能[J].稀有金属,2004,28(1):29-33.
    [44]杨健,黄卫东,陈静,等. TC4钛合金激光快速成形力学性能[J].航空制造技术,2007(5):73-76.
    [45]陈静,张霜银,薛蕾,等.激光快速成形Ti-6Al-4V合金力学性能[J].稀有金属材料与工程,2007,36(3):475-479.
    [46]李学伟,孙福久,刘锦辉,等.选择性激光快速熔化TC4合金成形工艺及性能[J].黑龙江科技大学学报,2016,26(5):536-540.
    [47]汤群.钛合金电子束快速成形缺陷形成机理研究[D].武汉:华中科技大学,2015.
    [48]刘延辉,瞿伟成,朱小刚,等.激光3D打印TC4钛合金工件根部裂纹成因分析[J].理化检验-物理分册,2016,52(10):682-685.
    [49]阮雪茜,林鑫,黄春平,等. TC4合金激光立体成形孔洞类缺陷的超声检测[J].中国激光,2015(12):64-71.
    [50]张凤英,陈静,谭华,等.钛合金激光快速成形过程中缺陷形成机理研究[J].稀有金属材料与工程,2007,36(2):211-215.
    [51]王维. TC4钛合金激光快速修复过程中熔合不良缺陷的评价研究[D].西安:西北工业大学,2007.
    [52]沈以赴,顾冬冬,李守卫,等.多组元金属粉末选区激光烧结三维瞬态温度场模拟[J].南京航空航天大学学报,2008,40(5):611-616.
    [53]陈静,杨海欧,杨健,等.高温合金与钛合金的激光快速成形工艺研究[J].航空材料学报,2003,23(S1):100-103.
    [54]黄卫东,李延民,冯莉萍,等.金属材料激光立体成形技术[J].材料工程,2002(3):40-43.
    [55]林宇,王剑彬,李林升,等. FDM技术3D打印机打印头结构优化设计[J].机械工程师,2017(2):3-5.
    [56]陶攀,李怀学,许庆彦.激光选区熔化工艺过程数值模拟的国内外研究现状[J].铸造,2017,66(7):695-701.
    [57] Bauerei A,Scharowsky T,K9rner C. Defect generation and propagation mechanism during additive manufacturing by selective beam melting[J]. Journal of Materials Processing Technology,2014,214(11):2522-2528.
    [58] Rai A,Markl M,K9rner C. A coupled Cellular Automaton-Lattice Boltzmann model for grain structure simulation during additive manufacturing[J]. Computational Materials Science,2016,124:37-48.
    [59] Qiu C,Panwisawas C,Ward M,et al. On the role of melt flow into the surface structure and porosity development during selective laser melting[J]. Acta Materialia,2015,96:72-79.
    [60] Parry L,Ashcroft I A,Wildman R D. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation[J]. Additive Manufacturing,2016,12:1-15.
    [61]姜亚琼,林鑫,马良,等.沉积路径对激光立体成形钛合金T型缘条热/应力场的影响[J].中国激光,2014,41(7):58-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700