Al对激光熔覆镍基合金涂层组织与性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Aluminum on Microstructure and Performance of Laser Cladding Ni-based Alloy Coating
  • 作者:蒋智秋 ; 陈泉志 ; 董婉冰 ; 童庆 ; 李伟洲
  • 英文作者:JIANG Zhiqiu;CHEN Quanzhi;DONG Wanbing;TONG Qing;LI Weizhou;School of Resoures, Environment and Materials, Guangxi University;Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University;
  • 关键词:球墨铸铁 ; 激光熔覆 ; 摩擦磨损 ; 高温氧化
  • 英文关键词:nodular cast iron;;laser cladding;;friction and wear;;high temperature oxidation
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:广西大学资源环境与材料学院;广西有色金属及特色材料加工重点实验室;
  • 出版日期:2019-06-20
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:国家自然科学基金(51371059;51001032);; 广西科技重大专项(AA18118030;AA17204100);; 广西自然科学基金项目(2014GXNSFCA118013;2016GXNSFDA380022);; 广西高等学校高水平创新团队项目(第二批)~~
  • 语种:中文;
  • 页:CLDB201912022
  • 页数:5
  • CN:12
  • ISSN:50-1078/TB
  • 分类号:120-124
摘要
为了提高球墨铸铁熔覆镍基合金涂层的性能,分别向镍基合金中添加0%、2%、4%、6%、8%(质量分数,下同)的Al。通过SEM、XRD、显微硬度、摩擦磨损、高温氧化实验分析了不同Al添加量对镍基合金熔覆层的显微组织、硬度、耐磨性能、抗高温氧化性能的影响。结果表明,Al的添加能提高镍基熔覆层的成型性,但当Al含量超过4%时,熔覆层出现了贯穿性裂纹缺陷。通过预置镍基中间过渡层,在无裂纹缺陷的前提下,可以将熔覆层中外加Al含量由原来的4%提高至8%。显微硬度实验表明,8%Al熔覆层的显微硬度最大,为740HV,是0%Al熔覆层的1.85倍。摩擦磨损实验表明,6%Al熔覆层上午耐磨性最好,磨损量仅为0%Al熔覆层的25%。850℃高温氧化实验表明,8%Al熔覆层在氧化120 h后的抗氧化性最好,氧化产物为Al_2O_3、NiCr_2O_4、(Fe,Cr)_2O_3、γ-Ni,氧化增重为1.89 mg/cm~2,仅为0%Al熔覆层的35%。
        In order to improve the performance of Ni based alloy coating 0 wt%, 2 wt%, 4 wt%, 6 wt% and 8 wt% Al elements were added to Ni based alloy.The effects of Al addition on the wear resistance,high temperature oxidation resistance and thermal fatigue resistance of Ni based alloy were analyzed by SEM, XRD, friction and wear, high temperature oxidation and thermal shock test. The results show that, with the addition of aluminum could significantly improve the cladding formability, but when the aluminum content was more than 4 wt%, the cracks appeared. By presetting the Ni based intermediate layer, the content of Al in the coatings could be increased from 4 wt% to 8 wt% at the premise of no crack defect. The microhardness experiment showed that when the aluminum content was 8 wt%, the microhardness of the coating was 740 HV, which was 1.85 times of that of the nickel-based coating. The tests of friction and wear showed that the wear resistance of the coating was best at the aluminum content of 6 wt% which wear mass loss was 25% of the nickel-based coating. The high temperature oxidation results showed that the oxidation resistance of the coating with 8 wt% aluminum content after 850 ℃/120 h oxidation was the best, the Al_2O_3, NiCr_2O_4,(Fe,Cr)_2O_3 and γ-Ni phases formed on the annealed coating, and the oxidation weight gain rate was 1.89 mg/cm~2, which was only 35% of the nickel-based coating.
引文
1 Li Yongjian,Dong Shiyun,Yan Shixing,et al.Surface and Coatings Technology,2018,339,37.
    2 Zhang W J.Research on the visual recognition technology of laser repair mould.Master’s Thesis,Taiyuan University of Science & Technology,China,2015 (in Chinese).张伟杰.模具激光修复的视觉识别技术研究.硕士学位论文,太原科技大学,2015.
    3 Xu X,Mi G,Chen L,et al.Journal of Alloys & Compounds,2017,715(8),81.
    4 Xiao Y,Gu J F,Zhang Y L,et al.Materials Reviev B:Research Papers,2017,31(11),65 (in Chinese).肖轶,顾剑峰,张有利,等.材料导报:研究篇,2017,31(11),65.
    5 Tan C,Zhu H,Kuang T,et al.Journal of Alloys & Compounds,2017,690(1),108.
    6 Zhong L,Li R G,Zhang X L.Journal of Mechanical Engineering,2017,53(2),67 (in Chinese).宗琳,李荣广,张小玲.机械工程学报,2017,53(2),67.
    7 Jiang J B,Lian G F,Xu M S.Journal of Chongqing University of Technology (Natural Science),2015,29(1),27(in Chinese).江吉彬,练国富,许明三.重庆理工大学学报(自然科学),2015,29(1),27.
    8 Li J L,Cheng C Z.Modern Welding Technology,2011,1(97),13 (in Chinese).李嘉宁,陈传忠.现代焊接,2011,1(97),13.
    9 Sun Y Z,Liu S,Li J B,et al.Materials Reviev B:Research Papers,2017,31(2),75(in Chinese).孙有政,刘帅,李进宝等.材料导报:研究篇,2017,31(2),75.
    10 Wang Y Q,Guo P D,Qi H B.Applied Laser,2017,37(6),825(in Chinese).王玉乔,郭鹏达,齐海波.应用激光,2017,37(6),825.
    11 Cai Y,Luo Z,Feng M,et al.Surface & Coatings Technology,2016,291(4),222.
    12 Wang X,Zhou S,Dai X,et al.International Journal of Refractory Metals & Hard Materials,2016,64(4),234.
    13 Weng F,Yu H,Chen C,et al.Journal of Alloys & Compounds,2016,686(11),74.
    14 Liu W,Lei Y W,et al.Chinese Journal of Lasers,2013,40(10),103 (in Chinese).牛伟,雷贻文,等.中国激光,2013,40(10),103.
    15 Liu H X,Tang S J,Cai C X,et al.Chinese Journal of Lasers,2013,40(6),156 (in Chinese).刘洪喜,唐淑君,蔡川雄,等.中国激光,2013,40(6),156.
    16 Wang Z J,Zhao Q H,Shang X F,et al.Laser & Infrared,2012,42(11),1244 (in Chinese).王志坚,赵青贺,尚晓峰,等.激光与红外,2012,42(11),1244.
    17 Zhou F,Liu Q B,Zheng B.High Power Laser and Particle Beams,2015,27(11),266(in Chinese).周芳,刘其斌,郑波.强激光与粒子束,2015,27(11),266.
    18 Lin W M,Duan J F,Liu H Z,et al.Foundry Equipment and Technology,2009(1),53 (in Chinese).林万明,段剑锋,刘鸿泽,等.铸造设备与工艺,2009(1),53.
    19 Li W,Zhang R L.Journal of Changchun University,1999,9(1),11 (in Chinese).李文,张瑞林.长春大学学报,1999,9(1),11.
    20 Li W,Cheng D F,Guang Z Z,et al.Acta Physica Sinica,1998,47(12),2064 (in Chinese).李文,陈岱发,关振中,等.物理学报,1998,47(12),2064.
    21 Jiang S Y,Li S C.Materials Reviev B:Research Papers,2010,24(9),72 (in Chinese).蒋淑英,李世春.材料导报:研究篇,2010,24(9),72.
    22 Zhang Y G,Han Y F,Cheng G L.Structural intermetallics,National Defense Industry Press,China,2001 (in Chinese).张永刚,韩雅芳,陈国良.金属间化合物结构材料,国防工业出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700