不同温度下噻吩与氢化镁反应路径分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Reaction path of thiophene and magnesium hydride at different temperature
  • 作者:刘博古 ; 张莉华 ; 李淑芳 ; 蒋瑞乾 ; 刘晓静 ; 李辛元 ; 周仕学
  • 英文作者:Liu Bogu;Zhang Lihua;Li Shufang;Jiang Ruiqian;Liu Xiaojing;Li Xinyuan;Zhou Shixue;College of Chemical and Environmental Engineering,Shandong University of Science and Technology;
  • 关键词:噻吩 ; 加氢脱硫 ; 氢化镁 ; 第一性原理
  • 英文关键词:thiophene;;hydrodesulphurization;;magnesium hydride;;first principle
  • 中文刊名:HGXC
  • 英文刊名:New Chemical Materials
  • 机构:山东科技大学化学与环境工程学院;
  • 出版日期:2017-05-15
  • 出版单位:化工新型材料
  • 年:2017
  • 期:v.45;No.536
  • 基金:国家自然科学基金(21176145);; 山东科技大学研究基金(2014TDJH105、2014RCJJ019);; 青岛博士后应用研究项目(201518)
  • 语种:中文;
  • 页:HGXC201705042
  • 页数:3
  • CN:05
  • ISSN:11-2357/TQ
  • 分类号:130-132
摘要
以球磨法制备镁基储氢材料,并作为供氢体对噻吩进行加氢脱硫研究。程序升温脱附(TPD)和差示扫描量热(DSC)测试表明,材料放氢峰温为320℃,可与噻吩加氢温度匹配。噻吩加氢脱硫实验表明,当反应温度为350℃时,噻吩加氢反应转化率最高;反应温度继续升高,转化率则随之下降。加氢脱硫反应产物分析表明,由于温度升高,储氢材料中的活性氢将直接结合生成氢气分子,从而使加氢反应较难进行,噻吩转化率下降。第一性原理计算结果表明,MgH_2直接对噻吩加氢的能量位垒为62.65kJ/mol,而由MgH_2所放出的氢气对噻吩加氢的2个位垒为275.36kJ/mol和365.36kJ/mol。MgH_2与噻吩直接反应更有利于加氢脱硫反应的进行。
        The Mg-based hydrogen storage material prepared by reactive ball-milling was used as the hydrogen donator in the hydrodesulphurization of thiophene.The temperature programmed desorption(TPD)and differential scanning calorimetry(DSC)analyse of hydrogen storage material showed that the peak temperature of material was 320℃,which can be used to determine the hydrodesulphurization temperature of thiophene.The results of hydrodesulphurization of thiophene showed that the conversion efficiency of thiophene will reach maximum at 350℃ and will reduce when the temperature exceeded 350℃.The analysis of reaction products showed that the active H from hydrogen storage material will form H_2 molecule preferentially and cannot reacted with thiophene because of the high reaction temperature,which was unfavourable for the hydrodesulphurization.Theoretical study suggested that the energy barrier of hydrodesulphurization of thiophene reacted with MgH_2 was 62.65kJ/mol,and the energy barriers of H_2 desorption from MgH_2 and hydrodesulphurization of thiophene reacted with H_2 were 275.36 and 365.36kJ/mol,respectively.This meaned thiophene reacted with MgH_2 directly was beneficial for the hydrodesulphurization reaction.
引文
[1]Dedual G,Macdonald M J,Alshareef A,et al.[J].Journal of Environmental Chemical Engineering,2014,2(4):1947-1955.
    [2]Danmaliki G I,Saleh T A.[J].Chemical Engineering Journal,2016,307:914-927.
    [3]Zhu H,Lu X,Guo W,et al.[J].Journal of Molecular Catalysis A Chemical,2012,363(11):18-25.
    [4]Khalil M,Lee R L,Liu N.[J].Fuel,2015,145(2):214-220.
    [5]Shimoyama I,Baba Y.[J].Carbon,2015,98:115-125.
    [6]López-Benítez A,Berhault G,Guevara-Lara A.[J].Journal of Catalysis,2016,344:59-76.
    [7]Escobar J,Barrera M C,Gutiérrez A W,et al.[J].Fuel Processing Technology,2017,156:33-42.
    [8]Iliuta I,Larachi F.[J].Fuel,2016,186:35-49.
    [9]Liu H,Yin C,Li X,et al.[J].Catalysis Today,2016,282:222-229.
    [10]Boukoberine Y,Hamada B.[J].Arabian Journal of Chemistry,2011,111:S522-S527.
    [11]Liu C,Zhou Z,Huang Y,et al.[J].Chinese Journal of Chemical Engineering,2014,22(4):383-391.
    [12]Baston E P,Fran9a A B,Neto A V D S.[J].Catalysis Today,2015,246(11):184-190.
    [13]Liu B,Zhao Z,Wang D,et al.[J].Computational&Theoretical Chemistry,2015,1052:47-57.
    [14]Wang T F,Zhang Y,Hui G E,et al.[J].Journal of Fuel Chemistry&Technology,2015,25(2):202-207.
    [15]Kanda Y,Matsukura Y,Sawada A,et al.[J].Applied Catalysis A General,2016,515:25-31.
    [16]Subhan F,Aslam S,Yan Z,et al.[J].Microporous&Mesoporous Materials,2014,199(20):108-116.
    [17]Narayanan D L,Lueking A D.[J].Carbon,2007,45(4):805-820.
    [18]Zhou S,Chen H,Ding C,et al.[J].Fuel,2013,109(7):68-75.
    [19]Zhou S,Chen H,Ran W,et al.[J].Journal of Alloys&Compounds,2014,592(14):231-237.
    [20]Zhou S,Zhang Q,Chen H,et al.[J].International Journal of Hydrogen Energy,2015,40(35):11484-11490.
    [21]Zhou S,Zhang Q,Ran W,et al.[J].Journal of Alloys&Compounds,2013,581(24):472-478.
    [22]Zhou S,Zhang X,Li T,et al.[J].International Journal of Hydrogen Energy,2014,39(25):13628-13633.
    [23]杨敏建.镁基储氢材料的制备及对二硫化碳、噻吩的加氢性能研究[D].青岛:山东科技大学,2010.
    [24]Chen H,Yu H,Zhang Q,et al.[J].Journal of Power Sources,2016,322:179-186.
    [25]Chen H,Zhou S,Han Z,et al.[J].Journal of Materials Chemistry A,2016,4(43):17207-17214.
    [26]Banerjee P,Chandrakumar K R S,Das G P.[J].Chemical Physics,2016,469:123-131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700