典型花生种子脱壳特性试验及有限元仿真研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental and finite element simulation of typical peanut seeds shelling characteristics
  • 作者:侯俊铭 ; 杨勇 ; 董帅 ; 何涛 ; 白晶波 ; 李金澎
  • 英文作者:HOU Junming;YANG Yong;DONG Shuai;HE Tao;BAI Jingbo;LI Jinpeng;School of Engineering, Shenyang Agricultural University;
  • 关键词:花生 ; 力学特性 ; 有限元 ; 压缩试验 ; ANSYS
  • 英文关键词:peanut;;mechanical property;;finite element;;compression test;;ANSYS
  • 中文刊名:DBDN
  • 英文刊名:Journal of Northeast Agricultural University
  • 机构:沈阳农业大学工程学院;
  • 出版日期:2017-12-07 12:38
  • 出版单位:东北农业大学学报
  • 年:2017
  • 期:v.48;No.273
  • 基金:国家自然基金项目(51475312);; 中国博士后基金(2012M510077)
  • 语种:中文;
  • 页:DBDN201711009
  • 页数:12
  • CN:11
  • ISSN:23-1391/S
  • 分类号:77-88
摘要
为研究花生种子机械脱壳变形和等效应力变化规律,改进脱壳装备设计,以辽宁地区主栽品种花育23和鲁花1号花生种子为研究对象,以破壳力和变形量为试验指标,加载速度、含水率、加载方式和品种为影响因素,对花生种子作单因素试验分析,建立花生壳和花生仁有限元模型,采用ANSYS软件对其静力学仿真。结果表明,加载速度、含水率、加载方式和品种对破壳力均影响显著(P<0.05);加载速度增加25%,破壳力和变形量下降7.54%及2.11%;含水率增加6.6%,破壳力和变形量上升19.7%及8.5%。花生壳不同加载方式有限元仿真最大变形量分别为2.34、3.23和3.86 mm,变形量与压缩载荷之间存在非线性关系,花生仁最大变形量约为花生壳的32%,试验结果与有限元仿真相近。研究为优化花生种子脱壳设备关键部件设计,降低脱壳破损提供参考。
        In order to study the deformation and equivlent stress for peanut seeds during the processe of mechanical shelling, and improve the design of the shelling equipment, the single factor tests of peanut seeds were conducted. Two kinds of peanuts that cultivated in Liaoning Huyu 23 and Luhua 1 were selected as tested objects. The rupturing force and deformation were selected as the test indexes, the loading velocity, moisture content, loading method and variety as the influence factors.Based on ANSYS software, finite element model of peanut shell and peanut kernel were set up, and conducted static simulating for it. The results showed that the loading rate, moisture content, loading method and variety had significant influence on the rupturing force(P<0.05); as the loading velocity increased by 25%, the rupture force and the deformation decreased by 7.54% and 2.11%; as the moisture content increased by 6.6%, the rupture force and the deformation were increased by 19.7%and 8.5%. The maximum deformation of peanut shell with different loading methods of in finite element simulation were 2.34 mm, 3.23 mm and 3.86 mm, the relation between deformation and compressive load was nonlinear. The maximum deformation of peanut kernel was approximately 32% of peanut shell deformation. The simulation results were near to the experimental results. This study will provide reference data for further improving the performare of peanut shelling machinekey components and reducing shelling damage.
引文
[1]高连兴,陈中玉,Charles Chen,等.美国花生收获机械化技术衍变历程及对中国的启示[J].农业工程学报,2017,33(12):1-9.
    [2]那雪姣,刘国明,张文,等.机械脱壳时花生仁损伤特征及规律[J].农业工程学报,2010,26(5):117-121.
    [3]吕小莲,胡志超,于向涛,等.花生种子挤压破碎机理的试验研究[J].华南农业大学学报,2013,34(2):262-266.
    [4]王京,高连兴,刘志侠,等.典型品种花生种子尺寸及均齐性研究[J].华中农业大学学报,2016,35(5):131-136.
    [5]Dilmac M,Altuntas E.Selected some engineering properties of peanut and its kernel[J].International Journal of Food Engineering,2012,8(2):1168-1174.
    [6]Balasubramanian S,Shama R,Sardana V.Studies on some engineering properties of peanut pod and its kernel[J].Journal of Agricultural Engineering Research,2011,48(2):38-42.
    [7]Fasina O O.Compressibility and physical properties of peanut hull grinds[C].2007 Minneapolis,Minnesota,2007.
    [8]Aydin C.Some engineering properties of peanut and kernel[J].Journal of food Engineering,2007,79(3):810-816.
    [9]Bitra V S P,Banu S,Ramakrishna P,et al.Moisture dependent thermal properties of peanut pods,kernels,and shells[J].Biosystems Engineering,2010,106(4):503-512.
    [10]史建新,赵海军,辛动军.基于有限元分析的核桃脱壳技术研究[J].农业工程学报,2005,21(3):185-188.
    [11]张荣荣,李小昱,王为,等.基于有限元方法的板栗破壳力学特性分析[J].农业工程学报,2008,24(9):84-88.
    [12]张克平,黄建龙,杨敏,等.冬小麦籽粒受挤压特性的有限元分析及试验验证[J].农业工程学报,2010,26(6):352-356.
    [13]李震,俞国胜,曲迪.基于ANSYS的生物质液压成型机双锥度模具特性研究[J].东北农业大学学报,2013,44(11):132-136.
    [14]王京,高连兴,刘志侠,等.典型品种花生米静压力学特性及有限元分析[J].沈阳农业大学学报,2016,47(3):307-313.
    [15]Iraj B,Sayed H P,Fatemeh R.Mechanical behavior of peanut kernel under compression loading as a function of moisture contents[J].Elixir Agriculture,2011,36:3552-3557.
    [16]徐对来,魏晓东,刘磊,等.固体农业物料力学特性的研究[J].黑龙江八一农垦大学学报,1998,10(3):40-44.
    [17]张永生,刘庆华.大变形有限元法计算水闸地基稳定性基本原理[J].东北农业大学学报,2006,37(2):232-234.
    [18]李心平,高连兴,马福丽.玉米种子力学特性的有限元分析[J].农业机械学报,2007,38(10):64-72.
    [19]钱巍,张燕晖,迟媛.机群环境下基于PCG法的有限元并行算法[J].东北农业大学学报,2006,37(3):390-392.
    [20]杨咸启,李晓玲.现代有限元技术与工程应用[M].北京:北京航空航天大学出版社,2007.
    [21]杨亚洲,刘姗姗,杨立权.花生荚果及花生仁力学特性试验研究[J].中国农机化学报,2016,37(10):108-111.
    [22]易克传,张新伟,沈永哲,等.含水率对花生脱壳及花生仁破壳力学性质的影响[J].扬州大学学报:农业与生命科学版,2013,34(3):65-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700