非对称双层薄膜型局域共振声子晶体低频隔声性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Low-frequency Sound Insulation Performance of Asymmetric Double-membrane Local Resonant Acoustic Metamaterial
  • 作者:蔡梦娜 ; 田红艳 ; 郄彦辉
  • 英文作者:CAI Mengna;TIAN Hongyan;QIE Yanhui;School of Mechanical Engineering, Hebei University of Technology;
  • 关键词:声学 ; 声学超材料 ; 弹性薄膜 ; 非对称 ; 传输系数 ; 低频隔声性能
  • 英文关键词:acoustics;;acoustic metamaterials;;elastic membrane;;asymmetric structure;;transmission coefficient;;lowfrequency sound insulation performance
  • 中文刊名:ZSZK
  • 英文刊名:Noise and Vibration Control
  • 机构:河北工业大学机械工程学院;
  • 出版日期:2019-04-18
  • 出版单位:噪声与振动控制
  • 年:2019
  • 期:v.39
  • 基金:河北省青年基金资助项目(A2016202195);; 特殊功能材料与结构设计教育部重点实验室开放基金资助项目;; 河北省教育厅重点科研资助项目(Grant ZD2016083);; 天津市科技特派员资助项目(16JCTPJC53100)
  • 语种:中文;
  • 页:ZSZK201902038
  • 页数:5
  • CN:02
  • ISSN:31-1346/TB
  • 分类号:203-207
摘要
薄膜型局域共振声子晶体结构简单、既薄又轻,是理想的低频隔声材料。对非对称结构双层薄膜型局域共振声子晶体材料的声学低频隔声性能进行研究,讨论声子晶体非对称结构中质量块分布方式、位置以及数目对声学衰减特性的影响。研究表明非对称结构双层薄膜型声子晶体由于其结构的非对称能够在低频呈现出优异的轻质、宽频隔声特性,且可通过调节质量块在薄膜上的位置、质量块的数量及分布方式对声波隔声的频率位置进行调节。
        Membrane-type local resonant acoustic metamaterial is an ideal low-frequency sound insulation material for its simple structure and lightweight. In this paper, the low-frequency sound insulation performance of the asymmetric doublemembrane type acoustic metamaterial is studied. The influences of the distribution and number of the attached mass blocks in the asymmetric structure on the acoustic attenuation characteristics are discussed. The results demonstrate that this metamaterial has the characteristic of lightweight and good sound isolation performance in a wide low-frequency range due to its asymmetrical structure. The frequency of sound insulation can be tuned by adjusting the position, the number or the distribution form of the mass blocks on the membrane.
引文
[1]徐磊,张学飞,王瑞乾,等.隔声材料排布顺序对复合板材隔声特性的影响[J].噪声与振动控制,2016,36(4):58-62.
    [2]何宇漾,靳晓雄.二维复合结构声子晶体的振动特性与实验研究[J].噪声与振动控制,2013,33(6):66-71.
    [3]咸奎成,彭福军.大尺寸空间薄膜结构形状控制研究[J].噪声与振动控制,2009,29(6):97-104.
    [4]YANG Z,MEI JUN,YANG MIN,et al.Membrane-type acoustic metamaterial with negative dynamic mass[J].Physical Review Letters,2008,101(20):204301,1-4.
    [5]NAIFY C J,CHANG C M,MCKNIGHT G,et al.Transmission loss and dynamic response of membranetype locally resonant acoustic metamaterials[J].Journal Applied Physics,2010,108(11):114905,1-7.
    [6]GAI X L,LI X H,ZHANG B,et al.The effect of coaxial ring masses with different contact areas,mass,and distribution on membrane-type acoustical metamaterials transmission loss[J].International Journal of Acoustics and Vibration,2016,21(4):362-770.
    [7]WANG X L,ZHAO H,LUO X D,et al.Membraneconstrained acoustic metamaterials for low frequency sound insulation[J].Applied Physics Letters,2016,108(4):041905,1-5.
    [8]MEI J,MA G C,YANG M,et al.Dark acoustic metamaterials as super absorbers for low-frequency sound[J].Nature Communications,2012,3:756.
    [9]YANG Z,DAI H M,CHAN N H,et al.Acoustic metamaterial panels for sound attenuation in the 50-1000Hz regime[J].Applied Physics Letters,2010,96(4):041906,1-3.
    [10]MA F Y,HUANG M,WU J H.Ultrathin lightweight platetype acoustic metamaterials with positive lumped coupling resonant[J].Journal of Applied Physics,2017,121(1):015102,1-10.
    [11]LANGFELDT F,GLEINE W,ESTORFF O.An efficient analytical model for baffled,multi-celled membrane-type acoustic metamaterial panels[J].Journal of Sound and Vibration,2018,417:359-375
    [12]ZHANG Y,WEN J,ZHAO H,et al.Sound insulation property of membrane-type acoustic metamaterials carrying different masses at adjacent cells[J].Journal of Applied Physics,2013,114(6):63515,1-5.
    [13]XIAO S W,MA G C,LI Y,et al.Active control of membrane-type acoustic metamaterial by electric field[J].Applied Physics Letters,2015,106(9):091904,1-4.
    [14]ZHAO J J,LI X H,WANG Y Y,et al.Membrane acoustic metamaterial absorbers with magnetic negative stiffness[J].The Journal of the Acoustical Society of America,2017,141(2):840-846.
    [15]NAIFY C J,CHANG C M,MCKNIGHT G et al.Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses[J].Journal of Applied Physics,2011,110(12):124903,1-8.
    [16]CHEN J S,CHEN Y B,CHEN H W,et al.Bandwidth broadening for transmission loss of acoustic waves using coupled membrane-ring structure[J].Material Research Express,2016,3:105801,1-10.
    [17]TIAN H Y,WANG X Z,ZHOU Y H.Theoretical model and analytical approach for a circular membrane-ring structure of locally resonant acoustic metamaterial[J].Applied Physics A,2014,114:985-990.
    [18]YANG M,MA G C,YANG Z Y,et al.Coupled membranes with doubly negative mass density and bulk modulus[J].Physics Review Letters,2013,110(13):134301,1-5.
    [19]SUI N,YAN X,HUANG T Y,et al.A lightweight yet sound-proof honeycomb acoustic metamaterial[J].Applied Physics Letters,2015,106:171905.
    [20]LI J,FOK L,YIN X,et al.Experimental demonstration of an acoustic magnifying hyperlens[J].Nature Materials,2009,8:931-934.
    [21]YAO S S,ZHOU X M,HU G K.Investigation of the negative-mass behaviors occurring below a cut-off frequency.New Journal of Physics,2010,12:103025,1-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700