聚醚醚酮与髌骨软骨间的生物摩擦学特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Biological tribological properties between polyetheretherketone and patella cartilage
  • 作者:张欣悦 ; 张德坤 ; 陈凯 ; 徐寒冬
  • 英文作者:ZHANG Xin-yue;ZHANG De-kun;CHEN Kai;XU Han-dong;School of Mechatronic Engineering,China University of Mining and Technology;School of Materials Science and Engineering,China University of Mining and Technology;
  • 关键词:聚醚醚酮 ; 髌骨软骨 ; 生物摩擦学 ; 磨损机理
  • 英文关键词:polyetheretherketone;;patella cartilage;;biological tribology;;abrasion mechanism
  • 中文刊名:CLGC
  • 英文刊名:Journal of Materials Engineering
  • 机构:中国矿业大学机电工程学院;中国矿业大学材料科学与工程学院;
  • 出版日期:2019-03-05 11:55
  • 出版单位:材料工程
  • 年:2019
  • 期:v.47;No.429
  • 基金:国家重点研发计划项目(2016YFC1101803);; 国家自然科学基金(51705517,51641510);; 江苏省自然科学基金(BK20160257)
  • 语种:中文;
  • 页:CLGC201902018
  • 页数:9
  • CN:02
  • ISSN:11-1800/TB
  • 分类号:133-141
摘要
以聚醚醚酮(polyetheretherketone,PEEK)与天然软骨为研究对象,医用CoCrMo和天然软骨作为PEEK的对比材料,开展往复滑动摩擦磨损实验,研究法向载荷、滑移速率、摩擦配副对其摩擦磨损行为的影响。结果表明:在小牛血清润滑的条件下,天然股骨软骨/髌骨软骨的摩擦因数最小,PEEK/髌骨软骨摩擦因数明显低于CoCrMo/髌骨软骨,PEEK/髌骨软骨配副的软骨表面磨损轻微,CoCrMo/髌骨软骨配副的软骨表面损伤严重;PEEK/髌骨软骨配副间的摩擦因数随法向载荷的增大而减小,在低载荷条件下(10~20N)表现明显,且法向载荷越大,PEEK表面磨痕越深,摩擦副磨损越严重;PEEK/髌骨软骨配副间的摩擦因数随滑移速率的增大而增大,在高滑移动速率条件下(10~20mm/s)明显,且滑移速率越大,PEEK表面磨痕越深,摩擦副磨损越严重;相对于滑移速率,载荷对摩擦因数的影响更大。
        Reciprocating sliding friction and wear tests were carried out on polyetheretherketone(PEEK) and natural patella cartilage using the pin-on-disk configuration at different normal loads, slipping velocity and friction pairs under 25% fetal bovine serum, where natural femoral cartilage and CoCrMo were used for comparison to PEEK. The influence of normal load, slipping velocity and friction pair on the friction and wear behavior was studied. The results show that under 25% fetal bovine serum conditions, the friction coefficient of femoral cartilage/patella cartilage is the smallest among that of PEEK/patella cartilage and CoCrMo/patella cartilage, the coefficient of friction of PEEK/patella is obviously lower than that of CoCrMo/patella and the wear surface of CoCrMo/patella is more seriously damaged than that of PEEK/patella. The friction coefficient of PEEK/patella decreases with the increase of normal load especially under the low loads(10-20 N) and increases with the increase of slipping velocity especially under the high slipping velocity conditions(10-20 mm/s). The wear surface damage increases with the increase of normal load and slipping velocity. The normal load is more effective than slipping velocity.
引文
[1] MULCAHY H, CHEW F S. Current concepts in knee replacement: complications[J]. American Journal of Roentgenology, 2014, 202(1):76-86.
    [2] GUPTA S K, CHU A, RANAWAT A S, et al. Review article: osteolysis after total knee arthroplasty[J]. Journal of Arthroplasty, 2007, 22(6):787-799.
    [3] HERNIGOU P, NOGIER A, MANICON O, et al. Alternative femoral bearing surface options for knee replacement in young patients[J]. Knee, 2004, 11(3):169-172.
    [4] INACIO M C S, GUY C, PAXTON E W, et al. Alternative bearings in total knee arthroplasty: risk of early revision compared to traditional bearings[J]. Acta Orthopaedica, 2013, 84(2):145-152.
    [5] 覃小东,李朝健,符俏. 人工膝关节常用假体材料及其生物相容性[J]. 中国组织工程研究, 2012, 16(12):2257-2260. QIN X D, LI C J, FU Q. Commonly used prosthetic materials for artificial knee joint and their biocompatibility[J]. Chinese Journal of Tissue Engineering Research, 2012, 16(12):2257-2260.
    [6] GARCIA-GONZALEZ D,RODRIGUEZ-MILLAN M,RUSINEK A, et al. Investigation of mechanical impact behavior of short carbon-fiber-reinforced PEEK composites[J]. Composite Structures, 2015, 133(2/3):1116-1126.
    [7] CHEN F, OU H G, LU B, et al. A constitutive model of polyether-ether-ketone (PEEK)[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 53(1):427-433.
    [8] GARCIA-GONZALEZ D,RODRIGUEZ-MILLAN M,RUSINEK A, et al. Low temperature effect on impact energy absorption capability of PEEK composites[J]. Composite Structures, 2015, 134(15):440-449.
    [9] 程芳伟,姜其斌,张志军. 聚醚醚酮耐磨改性研究进展[J]. 工程塑料应用, 2014,42(1):126-129. CHENG F W, JIANG Q B, ZHANG Z J. Research progress on wear-resisting modification of PEEK[J]. Engineering Plastics Application, 2014,42(1):126-129.
    [10] 宗倩颖,叶霖,张爱英,等. 聚醚醚酮及其复合材料在生物医用领域的应用[J]. 合成树脂及塑料, 2016, 33(3):93-96. ZONG Q Y, YE L, ZHANG A Y, et al. Applications of polyether ether ketone and its composites in biomedical field[J]. China Synthetic Resin and Plastics, 2016, 33(3):93-96.
    [11] KURTZ S M, DEVINE J N. PEEK biomaterials in trauma, orthopedic, and spinal implants[J]. Biomaterials, 2007, 28(32):4845-4869.
    [12] 韩成龙,刘杨,姜超,等. 锚定聚醚醚酮融合器结合纳米人工骨治疗脊髓型颈椎病[J]. 中国组织工程研究, 2010, 14(35):6643-6646. HAN C L, LIU Y, JIANG C, et al. Treatment of cervical spondylotic myelopathy by anchoring polyether-ether-ketone cage filled with nano-artificial bone[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2010, 14(35):6643-6646.
    [13] LEE W, KOAK J, LIM Y, et al. Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2012, 100(4): 1044-1052.
    [14] PACE N, MARINELLI M, SPURIO S. Technical and histologic analysis of a retrieved carbon fiber-reinforced poly-ether-ether-ketone composite alumina-bearing liner 28 months after implantation[J]. Journal of Arthroplasty, 2008, 23(1):151-155.
    [15] SCHOLE S C, UNSWORTH A. Wear studies on the likely performance of CFR-PEEK/CoCrMo for use as artificial joint bearing materials[J]. J Mater Sci Mater Med, 2009, 20(1):163-170.
    [16] 李锋,张克,刘岩,等. 保留髌骨膝关节置换的症状及影像学评价[J]. 中国组织工程研究, 2011, 15(26):4773-4776. LI F, ZHANG K, LIU Y, et al. Radiological and functional evaluation during total knee replacement without patellar resurfacing[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2011, 15(26):4773-4776.
    [17] MAYASSI F, PAOLI T, CIVININI R, et al. Oxidized zirconium versus cobalt-chromium against the native patella in total knee arthroplasty: patellofemoral outcomes[J]. Knee, 2017, 24(5):1160-1165.
    [18] AIGNER T, MCKENNA L. Molecular pathology and pathobiology of osteoarthritic cartilage[J]. Cellular and Molecular Life Sciences CMLS, 2002, 59(1):5-18.
    [19] MAROUDAS A, BULLOUGH P, SWANSON S A, et al. The permeability of articular cartilage[J]. Journal of Bone & Joint Surgery British Volume, 1968, 50(1):166-177.
    [20] NORTHWOOD E, FISHER J. A multi-directional in vitro investigation into friction, damage and wear of innovative chondroplasty materials against articular cartilage[J]. Clinical Biomechanics, 2007, 22(7):834-842.
    [21] VANLOMMEL J, DE C R, LUYCKX J P, et al. Articulation of native cartilage against different femoral component materials, oxidized zirconium damages cartilage less than cobalt-chrome[J]. Journal of Arthroplasty, 2016,32: 256-262.
    [22] 葛世荣,王成焘. 人体生物摩擦学的研究现状与展望[J]. 摩擦学学报, 2005, 25(2):186-191. GE S R, WANG C T. Research status and prospect of human biological tribology[J]. Journal of Tribology, 2005, 25(2):186-191.
    [23] JAHN S, SEROR J, KLEIN J. Lubrication of articular cartilage[J]. Annual Review of Biomedical Engineering, 2016, 18(1):235-258.
    [24] KATTA J, PAWASKAR S S, JIN Z M, et al. Effect of load variation on the friction properties of articular cartilage[J]. Proceedings of the Institution of Mechanical Engineers-Part J, 2007, 221(3):175-181.
    [25] TZANAKIS I, CONTE M, HADFIELD M, et al. Experimental and analytical thermal study of PTFE composite sliding against high carbon steel as a function of the surface roughness, sliding velocity and applied load[J]. Wear, 2013, 303(1/2): 154-168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700