铁对亚快速凝固高铝青铜组织和性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Iron on Microstructure and Properties of Sub-rapidly Solidified High Aluminum Bronze
  • 作者:管红艳 ; 张汉山 ; 袁庆龙
  • 英文作者:GUAN Hongyan;ZHANG Hanshan;YUAN Qinglong;School of Mechanical Engineering,Shangqiu Institute of Technology;
  • 关键词:亚快速凝固 ; 高铝青铜 ; ; 微观组织
  • 英文关键词:sub-rapidly solidified;;high aluminum bronze;;iron;;microstructure
  • 中文刊名:ZZJS
  • 英文刊名:Foundry Technology
  • 机构:商丘工学院机械工程学院;
  • 出版日期:2018-11-18
  • 出版单位:铸造技术
  • 年:2018
  • 期:v.39;No.320
  • 基金:校级科研重点资助项目(2018XKZ01)
  • 语种:中文;
  • 页:ZZJS201811020
  • 页数:4
  • CN:11
  • ISSN:61-1134/TG
  • 分类号:82-85
摘要
利用金相显微镜、X射线衍射仪和扫描电镜等研究了Fe含量对亚快速凝固态高铝青铜Cu-15Al-X Fe(X=0,1,4,7,10,12,15)合金组织和性能的影响。结果表明,Fe含量的变化对亚快速凝固态高铝青铜合金的组织形态有显著影响。随着Fe含量增加,合金形貌由单一柱状晶结构向等轴晶转变。当w(Fe)≤7%时,合金主要由先共析γ_2相和(α+γ_2)共析体组成,随着Fe含量增加,柱状晶间距减小,γ_2相由稀疏粗大网状变成细密均匀的枝晶状;当w(Fe)≥10%时,合金主要由(α+γ_2)共析体一定体积的κ相组成,随着Fe含量的增加,κ相逐渐增多并合并长大。合金的硬度呈现出先上升后下降的趋势,合金的最大硬度值出现在w(Fe)为4%时,此时硬度值为492 HV。
        The influence of different iron content on sub-rapidly solidified high aluminum bronze microstructures and properties were investigated by using optical microscopy,X-ray diffraction and scanning electron microscope.The results show that the iron content will great influence on the microstructure and phase composition of sub-rapidly solidified high aluminum bronze alloys.With the increase of Fe content,the morphology of alloy is transformed from columnar grain to equiaxed grain.When w(Fe) ≤7%,the microstructure of alloys consists of γ_2+(α+γ_2).As the increase of Fe content,columnar grain is refined gradually and γ_2 is transformed from coarse net structure to fine and dense dendritic structure;when w(Fe)≥10%,the microstructure of alloys is composed of(α+γ_2)+κ,in which the phase increases gradually becomes coarsening with Fe content increasing.The hardness of alloys increase at first and then decrease with Fe addition increasing,and the maximum hardness value reaches 492 HV.
引文
[1]Mustafa Y,Yahya A.The effect of aging heat treatment on the sliding wear behaviour of Cu-Al-Fe alloys[J].Materials and Design,2008,30(3):878-884.
    [2]张琳,汪建敏,储文平,等.锻态QAl9-4铝青铜热处理工艺研究[J].热加工工艺,2016,45(22):203-206,213.
    [3]李雨蔚,肖来荣,章玮,等.不同Mn含量的铝青铜合金组织与性能[J].稀有金属,2017,41(9):985-991.
    [4]李海,孙王杰,王芝秀,等.Cu-Al-Fe-Ni-Pb铝青铜摩擦磨损行为的研究[J].热加工工艺,2015,44(16):100-103.
    [5]Pisarek B P.Model of Cu-Al-Fe-Ni bronze crystallization[J].Archives of Foundry Engineering,2013,14(4):39-42.
    [6]路阳,金硪馨,李文生,等.Fe对高铝青铜摩擦磨损性能的影响[J].材料导报,2008,22(2):135-137.
    [7]林高用,曾菊花,王莉,等.新型Cu-Al-Fe-Ni变形铝青铜的固溶和时效强化[J].中国有色金属学报,2012,22(6):1586-1593.
    [8]戴安伦,严高闯,朱治愿,等.热处理对新型高铝青铜合金摩擦磨损性能的影响[J].机械工程材料,2013,37(12):16-20,26.
    [9]张胜全,尹赟,李鹏.固溶、时效、深冷处理对QAl9-4铝青铜组织及性能的影响[J].材料热处理学报,2014,35(10):39-43.
    [10]Teng H T,Li T J,Zhang X L,et al.Influence of sub-rapid solidification on microstructure and mechanical properties of AZ61 magnesium alloy[J].Transactions of Nonferrous Metals Society of China,2008,18(S1):86-90.
    [11]文九巴.机械工程材料[M].北京:机械工业出版社,2002.
    [12]杨顺田,姚军.铸造铝铜合金ZL203-S强化机理研究与应用[J].铸造技术,2016,37(1):91-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700