电子束熔炼Inconel 740合金不同热处理状态下的组织演变与显微硬度
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microstructure Evolution and Microhardness of Inconel 740 Alloy in Different Heat-treatment Conditions Prepared by Electron Beam Melting
  • 作者:谭毅 ; 廖娇 ; 李佳艳 ; 石爽 ; 王清 ; 游小刚 ; 李鹏廷 ; 姜辛
  • 英文作者:TAN Yi;LIAO Jiao;LI Jia-yan;SHI Shuang;WANG Qing;YOU Xiao-gang;LI Peng-ting;JIANG Xin;School of Materials Science and Engineering,Dalian University of Technology;Key Laboratory for Solar Energy Photovoltaic System of Liaoning Province,Dalian University of Technology;
  • 关键词:电子束熔炼 ; Inconel ; 740合金 ; 组织 ; 显微硬度
  • 英文关键词:electron beam melting;;Inconel 740alloy;;microstructure;;microhardness
  • 中文刊名:CLGC
  • 英文刊名:Journal of Materials Engineering
  • 机构:大连理工大学材料科学与工程学院;大连理工大学辽宁省太阳能光伏系统重点实验室;
  • 出版日期:2015-04-20
  • 出版单位:材料工程
  • 年:2015
  • 期:v.43;No.383
  • 语种:中文;
  • 页:CLGC201504005
  • 页数:6
  • CN:04
  • ISSN:11-1800/TB
  • 分类号:23-28
摘要
利用电子束熔炼技术制备Inconel 740合金,研究热处理状态下合金的组织演变过程与显微硬度的分布情况,分析热处理过程中合金相析出规律与相分布特点。结果表明:合金宏观组织良好,夹杂物含量较少,晶粒尺寸在2mm左右。标准热处理后的组织主要为奥氏体,并有大量孪晶,晶界上碳化物M23C6呈连续分布,同时也有G相和η相析出。晶内析出大量球形、尺寸大小约为30nm的强化相γ′。电子束熔炼制备的Inconel 740合金在标准热处理状态下的显微硬度明显高于传统方法制备的同种合金,约高120HV0.1。
        Inconel 740 alloy was prepared by electron beam melting(EBM).The microstructure evolution and microhardness variation of the alloy under heat treatment conditions were investigated,the precipitation principle and distribution characteristics of phases during heat treatment process were analyzed.The results indicate that Inconel 740 alloy has a good macrostructure and lower inclusion content,the grain size is about 2mm.The microstructure is austenite with a lot of twin crystals after standard heat treatment,the M23C6 carbides are distributed continuously on the grain boundaries,with G phase andηphase.Lots of spherical and 30 nm in size strengthen phaseγ′precipitate in the grain.The microhardness of Inconel 740 alloy prepared by electron beam melting with standard heat treatment is about 120HV0.1higher than the same alloy that made through traditional method.
引文
[1]郭建亭.高温合金在能源工业领域中的应用现状与发展[J].金属学报,2010,46(5):513-527.GUO J T.The current situation of application and development of superalloys in the fields of energy industry[J].Acta Metallurgica Sinica,2010,46(5):513-527.
    [2]郭建亭,周兰章,袁超,等.我国独创和独具特色的集中高温合金的组织与性能[J].中国有色金属学报,2011,21(2):237-250.GUO J T,ZHOU L Z,YUAN C,et al.Microstructure and properties of several originally invented and unique superalloys in China[J].The Chinese Journal of Nonferrous Metals,2011,21(2):237-250.
    [3]SMITH G D.Introduction of an advanced superheater alloy for coal-fired boilers[A].Corrosion 2000[C].Houston:International NACE Press,2000.1-12.
    [4]VISWANATHAN R,COLEMAN K,RAO U.Materials for ultra-supercritical coal-fired power plant boilers[J].International Journal of Pressure Vessels and Piping,2006,83(11):778-783.
    [5]ZHAO S Q,XIE X S,SMITH D G,et al.Research and improvement on structure stability and corrosion resistance of nickelbase superalloy INCONEL alloy 740[J].Materials&Design,2005,27(10):1120-1127.
    [6]COWEN J C,DANIELSON E P,JABLONSKI D P.The microstructural evolution of Inconel alloy 740 during solution treatment,aging,and exposure at 760℃[J].Journal of Materials Engineering and Performance,2011,20(6):1078-1063.
    [7]ZHANG Z H,FRENZEL J,NEUKING K,et al.On the reaction between NiTi melts and crucible graphite during vacuum induction melting of NiTi shape memory alloys[J].Acta Materialia,2005,53(14):3971-3985.
    [8]李清华,赵志力.真空冶金现状及发展前景[J].沈阳大学学报,2003,15(2):35-42.LI Q H,ZHAO Z L.The present situation and the prospect of vaccum metallurgy[J].Journal of Shenyang University,2003,15(2):35-42.
    [9]王晓峰,周晓明,穆松林,等.高温合金熔炼工艺讨论[J].材料导报A,2012,26(4):135-134.WANG X F,ZHOU X M,MU S L,et al.Discussion on melting process of superalloy[J].Materials Review A,2012,26(4):135-134.
    [10]郭建亭.高温合金材料学(中册)制备工艺[M].北京:科学出版社,2008.GUO J T.Materials Science for Superalloys(Middle Volume)Preparation Process[M].Beijing:Science Press,2008.
    [11]张文林,孙涛,李娟莹.电子束熔炼及其设备[J].冶金设备,2003,140(4):32-34.ZHANG W L,SUN T,LI J Y.The smelting of electron beam and the smelting equipment[J].Metallurgical Equipment,2003,140(4):32-34.
    [12]CHOUDHURY A,HENGSBERGER Y.Electron beam melting and refining of metals and alloys[J].ISIJ International,1992,32(5):673-681.
    [13]郭岩,周荣灿,侯淑芳,等.镍基合金的析出相及其强化机制[J].金属热处理,2011,36(7):46-50.GUO Y,ZHOU R C,HOU S F,et al.Precipitates and strengthening mechanism in Ni-based alloys[J].Heat Treatment of Metals,2011,36(7):46-50.
    [14]李秀艳,张建,戎利建,等.Fe-Ni基合金中次生η相的析出机理[J].材料研究学报,2006,20(2):113-119.LI X Y,ZHANG J,RONG L J,et al.The precipitation mechanism of secondaryηphase in a FeNi-based alloy[J].Chinese Journal of Materials Research,2006,20(2):113-119.
    [15]陈思成,李长荣,杜振民,等.Ni基高温合金共格强化相平衡形状的能量分析[J].材料热处理学报,2012,33(12):147-151.CHEN S C,LI C R,DU Z M,et al.Energetic analysis of equilibrium shapes of coherent precipitates in Ni-based superalloys[J].Transactions of Materials and Heat Treatment,2012,33(12):147-151.
    [16]陈昊,董建新,张麦仓.热处理工艺对铸造高温合金K480组织的影响[J].材料热处理学报,2012,33(7):37-44.CHEN H,DONG J X,ZHANG M C.Effect of heat treatment process on microstructure of cast superalloy K480[J].Transactions of Materials and Heat Treatment,2012,33(7):37-44.
    [17]ZHAO S Q,XIE X S,GAYLORD D.Microstructural stability and mechanical properties of a new nickel-based superalloy[J].Materials Science and Engineering:A,2003,355(1):96-105.
    [18]ZHAO S Q,XIE X S,GAYLORD D S,et al.Gamma prime coarsening and age-hardening behaviors in a new nickel base superalloy[J].Materials Letters,2004,58(11):1784-1787.
    [19]姚志浩,董建新,陈旭,等.GH738高温合金长期时效过程中γ′相演变规律[J].材料热处理学报,2013,34(1):31-37.YAO Z H,DONG J X,CHEN X,et al.Gamma prime phase evolution during long-time exposure for GH738superalloy[J].Transactions of Materials and Heat Treatment,2013,34(1):31-37.
    [20]胡赓祥,蔡珣,戎咏华.材料科学基础[M].上海:上海交通大学出版社,2006.HU G X,CAI X,RONG Y H.Fundamentals of Materials Science[M].Shanghai:Shanghai Jiao Tong University Press,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700