机械处理对花生壳纤维素纳米纤丝的性能影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Mechanical Treatments on Properties of Cellulose Nanofiber from Peanut Shell
  • 作者:王宝霞 ; 赵通 ; 李大纲 ; 舒祖菊 ; 谢梦佳
  • 英文作者:WANG Baoxia;ZHAO Tong;LI Dagang;SHU Zuju;XIE Mengjia;College of Lighttextile Engineering and Art,Anhui Agriculture University;College of Material Science and Engineering,Nanjing Forestry University;
  • 关键词:花生壳 ; 纳米纤维素 ; 机械力开纤 ; 光学性能 ; 力学性能
  • 英文关键词:peanut shell;;cellulose nanofiber;;mechanical fibrillation;;optical properties;;mechanical properties
  • 中文刊名:CLKX
  • 英文刊名:Journal of Materials Science and Engineering
  • 机构:安徽农业大学轻纺工程与艺术学院;南京林业大学材料科学与工程学院;
  • 出版日期:2019-06-20
  • 出版单位:材料科学与工程学报
  • 年:2019
  • 期:v.37;No.179
  • 基金:安徽省教育厅资助项目(KJ2016A231);; 安徽农业大学引进人才资助项目(wd 2018-01);; 安徽省大学生创训资助项目(XJDC2018226)
  • 语种:中文;
  • 页:CLKX201903021
  • 页数:6
  • CN:03
  • ISSN:33-1307/T
  • 分类号:119-124
摘要
利用不同机械力对花生壳纯化纤维素进行逐级开纤处理,研究了不同尺度纤维素纳米纤丝(CNF)的微观形貌,采用抽滤法将CNF制备成膜,对比分析了不同样品的断面特征、力学性能、光学性能以及热性能。结果表明,研磨可从花生壳纯化纤维素中剥离出直径约200nm的CNF,纤丝制备成膜后结构较为疏松,层间距大,再经高压均质和超声连续处理可制备出高长径比花生壳CNF,纤丝直径分布在15nm左右,成膜后在膜断面形成了紧密连续结构。经研磨-均质-超声逐级细化后的CNF膜的透光率可达66.7%,相比研磨膜提高了近40%,同时表现出极佳的力学性能,拉伸强度和杨氏模量分别为181MPa和7.1GPa,较研磨膜分别提高了99%和22%,断裂伸长率亦提升至7.3%。此外,该薄膜的热膨胀系数低至12.2ppm/K,具有优异的热稳定性。
        Purified cellulose from peanut shell was gradually defibrillated by different mechanical methods to obtain cellulose nanofibers.The morphologies of the cellulose nanofiber(CNF)with different diameters were observed through SEM.The morphology of cross sections,mechanical properties,optical properties and thermal properties of different CNF sheets were compared.The results show that grinding can fibrillated the cellulose fiber to CNF with the diameter about 200 nm.This kind of CNF film has a large distance between layers and loose structure.Followed by high pressure homogenization and ultrasonication,high aspect ratio CNF with diameters about 15 nm were successfully prepared.This CNFs film has a dense structure in cross section.The regular transmittance of the film with the diameter of 15 nm was 66.7%,which is 40%higher than the CNF film just by grinding.Meanwhile,this kind of film also shows the excellent mechanical properties.It has a tensile strength of 181 MPa and Young's modulus of 7.1 GPa.Meanwhile,the elongation at break of the film is improved to 7.3%.Moreover,the film exhibited favorable thermal stability with the CTE value as low as 12.2 ppm/K.
引文
[1]Saheb D N,Jog J P.Natural fiber polymer composites:a review[J].Advances in Polymer Technology,1999,18(4):351~363.
    [2]范鹏程,田静,等.花生壳中纤维素和木质素含量的测定方法[J].重庆科技学院学报(自然科学版),2008,5(10):64~67.
    [3]Sakurada I,Nukushina Y,Ito T.Experimental determination of the elastic modulus of crystalline regions in oriented polymers[J].Jounal of Polymer science,1962,57(165):651~660.
    [4]Miroslawa S.A,Janusz K,Tadeusz A.Nanotechnologymethods of manufacturing cellulose nanofibers[J].Fibers&Textiles in Eastern Europe,2012,20(2):8~12.
    [5]Kalia S,A,Dufresne.B,Cherian M,et al.Cellulose-based bio-and nanocomposites:a review[J].International Journal of Polymer Science,2011,2011(8):2341~2348.
    [6]刘兵,周益名,吴清珍,等.纤维素水凝胶包覆Fe3O4类Fenton纳米催化剂的制备及其催化降解性能[J].材料科学与工程学报,2017,35(1):119~124.
    [7]Herrick F W,Casebier R L,Hamilton J K,et al.Microfibrillated cellulose:morphology and accessibility[J].Journal of Applied Polymer Science:Applied Polymer Symposium,1983,37:797~813.
    [8]Iwamoto S,Nakagaito A N,Yano H.Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites[J].Applied Physics A-Materials Science&Processing,2007,89(2):461~466.
    [9]Zhao H P,Feng X Q,Gao H.Ultrasonic technique for extracting nanofibers from nature materials[J].Applied Physics Letters,2007,90(7):17.
    [10]Zuluaga R,Putaux J L,Cruz J,et al.Cellulose microfibrils from banana rachis:effect of alkaline treatments on structural and morphological features[J].Carbohydrate Polymers,2009,76(1):51~59.
    [11]Wang B X,Li D G.Strong and optically transparent biocomposties reinforced with cellulose nanofibers isolated from peanut shell[J].Composites Part A:Applied Science and Manufacturing,2015,39:1~7.
    [12]卿彦,蔡智勇,吴义强,等.纤维素纳米纤丝研究进展[J].林业科学,2012,7(48):145~152.
    [13]Iwamoto S,Nakagaito A N,Yano H,et al.Optically transparent composites reinforced with plant fiber-based nanofibers[J].Applied Physics A-Materials Science&Processing,2005,81(6):1109~1112.
    [14]Li W,Wu Q,Zhao X,et al.Enhanced thermal and mechanical properties of PVA composites formed with filamentous nanocellulose fibrils[J].Carbohydrate Polymers,2014,113:403~410.
    [15]Zhou Y M,Fu S Y,Zheng L M,et al.Effect of nanocellulose isolation techniques on the formation of reinforced poly(vinyl alcohol)nanocomposite films[J].Express Polymer Letters,2012,6(10):794~804.
    [16]Cho M J,Park B D.Tensile and thermal properties of nanocellulose-reinforced poly(vinyl alcohol)nanocomposites[J].Journal of Industrial and Engineering Chemistry,2011,17(1):36~40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700