燥红土微咸水滴灌下水盐运移规律的试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study of movement of water and salts in dry red soilunder drip irrigation with brackish water
  • 作者:董丽艳 ; 王卫华
  • 英文作者:DONG Li-yan;WANG Wei-hua;Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology;
  • 关键词:微咸水滴灌 ; 燥红土 ; 水盐运移 ; 矿化度 ; 湿润峰
  • 英文关键词:drip irrigation with brackish water;;dry red soil;;water and salt migration;;salinity;;wetting front
  • 中文刊名:GHDQ
  • 英文刊名:Agricultural Research in the Arid Areas
  • 机构:昆明理工大学现代农业工程学院;
  • 出版日期:2019-03-10
  • 出版单位:干旱地区农业研究
  • 年:2019
  • 期:v.37;No.173
  • 基金:国家自然科学基金(51409136);; 昆明理工大学自然科学研究基金(KKSY201423023);; 云南省高校工程研究中心建设计划项目
  • 语种:中文;
  • 页:GHDQ201902007
  • 页数:7
  • CN:02
  • ISSN:61-1088/S
  • 分类号:43-49
摘要
为了探讨燥红土地区微咸水滴灌的水盐运移规律,对该地区容重为1.2 g·cm~(-3)的红壤土,进行了不同灌水矿化度(2.88 g·L~(-1),4.86 g·L~(-1),8.33 g·L~(-1))的单、双点源入渗试验及不同滴头流量(2.68 L·h~(-1),3.74 L·h~(-1),4.68 L·h~(-1))的单点源入渗试验,采用室内三维土箱入渗,分析滴头流量及矿化度对该地区红壤土水盐运移规律的影响。结果表明:单点源入渗试验中,矿化度一定(2.88 g·L~(-1))的条件下,灌溉时间在150 s后, 3.74 L·h~(-1)滴头流量下湿润锋运移速率快且稳定,平均推进速率达1.65 cm·s~(-1),最终推进深度达22 cm,可以达到灌溉要求,优于4.68 L·h~(-1)滴头流量的综合性能且节省灌溉水;在滴头流量一定(3.74 L·h~(-1))的条件下,湿润锋推进深度随矿化度的增加而增加,其速率排序为:2.88 g·L~(-1)<4.86 g·L~(-1)<8.33 g·L~(-1),其推进深度分别为21.5、22.4、22.78 cm。双点源试验中,矿化度为8.33 g·L~(-1)和4.86 g·L~(-1)的滴头正下方及交汇部分含水率均达到0.4 g·g~(-1)左右;但8.33 g·L~(-1)矿化度下含盐量可达0.4%,不适合作物生长,而矿化度为4.86 g·L~(-1)的微咸水灌溉时,在交汇部分会形成一个含盐量0.1%左右的适合作物生长的低盐区域。在滴头流量为3.74 L·h~(-1)时,将单、双点源入渗试验的同一入渗深度处进行对比分析发现,随着矿化度增大,地表湿润比由87%增加到90.8%;8.33 g·L~(-1)矿化度下交汇时间比2.88 g·L~(-1)矿化度下提前16 min;矿化度为8.33 g·L~(-1)时在0~15 cm土层,交汇区含盐量相对于相同湿润位置处单点源的含盐量增加了37%,而矿化度不大于4.86 g·L~(-1)时,含盐量增加比率几乎为负值,可知矿化度为4.86 g·L~(-1)的土壤积盐不显著且含水率高。在灌溉水资源匮乏的云南燥红土地区推广应用微咸水滴灌时,可参考滴头流量3.74 L·h~(-1),微咸水矿化度≤4.86 g·L~(-1)用于作物栽培实践。
        In order to better understand the water and salt transport of brackish water drip irrigation in dry red soil region, single and double point source infiltration experiments with different irrigation salinity(2.88 g·L~(-1), 4.86 g·L~(-1) and 8.33 g·L~(-1)) and single point source infiltration experiments with different dripper discharge(2.68 L·h~(-1), 3.74 L·h~(-1), 4.68 L·h~(-1)) were carried out on red soil with a bulk density of 1.2 g·cm~(-3). The effects of dripper discharge and salinity on water and salt transport in red loam soil were analyzed. The results showed that under the fixed salinity(2.88 g·L~(-1)), the movement rate of wetting front was fast and stable after 150 seconds, and the average advancing rate was 1.65 cm·s~(-1) under 3.74 L·h~(-1)dripper discharge. The final wetting depth was 22 cm, which meets the irrigation requirements. Its comprehensive performance was better than 4.68 L·h~(-1)dripper discharge and effectively saved irrigation water. Under certain conditions(3.74 L·h~(-1)), the propulsive depth of wetting front increased with increasing salinity, and its velocity was 2.88 g·L~(-1)<4.86 g·L~(-1)<8.33 g·L~(-1), and the propulsive depth was 21.5 cm, 22.4 cm and 22.78 cm, respectively. In the double point source experiment, the water content of the dripper with salinity of 8.33 g·L~(-1) and 4.86 g·L~(-1) was about 0.4 g·g~(-1), while the salt content of the dripper with salinity of 8.33 g·L~(-1)was about 0.4%, which was not suitable for the cropgrowth. When the water salinity of 4.86 g·L~(-1)was irrigated, a low salinity area with salinity of about 0.1% was formed in the intersection part. When the dripper flow rate was 3.74 L·h~(-1), comparing the same infiltration depth of single and double point source infiltration tests, it is found that increasing salinity made the surface wetting ratio increase from 87% to 90.8%. The intersection time at 8.33 g·L~(-1) salinity was 16 minutes earlier than that at 2.88 g·L~(-1) salinity.The salinity at 0~15 cm soil layer at 8.33 g·L~(-1) of drip water salinity at the same wetting position increased by 37% over that at the single point source. When the salinity was not more than 4.86 g·L~(-1), the salt content increase ratio was almost negative. While the irrigation salinity was at 4.86 g·L~(-1),salt accumulation was not significant and the water content was high. When using drip irrigation with brackish water in dry red soil area of Yunnan Province where irrigation water resources are scarce, the drip flow rate of 3.74 L·h~(-1)with ≤4.86 g·L~(-1)salinity of brackish water can be used for crop cultivation practice.
引文
[1] 马丽娟,侯振安,闵伟,等.适宜咸水滴灌提高棉花水氮利用率[J].农业工程学报,2013,29(14):130-138.
    [2] 吴忠东,王全九.微咸水连续灌溉对冬小麦产量和土壤理化性质的影响[J].农业机械学报,2010,41(9):36-43.
    [3] Shani U,Dudley L M.Field studies of crop response to water and salt stress.Soil Science Society of America Journal[J],2001,65(1):1522-1528.
    [4] Ayars J E.Managing subsurface drip irrigation in the presence of shallow ground water[J].Agricultural Water Management,2001,47(3):243-264.
    [5] 李从仁.云南省地下水资源分布特征及地下水环境问题[C]//中国地质矿产经济学会.资源·环境·循环经济——中国地质矿产经济学会2005年学术年会论文集,北京:中国大地出版社,2005:512-516.
    [6] 马文军,程琴娟,李良涛,等.微咸水灌溉下土壤水盐动态及对作物产量的影响[J].农业工程学报,2010,26(1):73-80.
    [7] 吴忠东,王全九.不同初始含水率条件下的微咸水入渗实验[J].农业机械学报,2010,41(S1):53-58.
    [8] 蒲胜海,何新林,王振华,等.微咸水水源线源滴灌土壤水盐运移特征试验研究[J].中国农村水利水电,2009,(5):56-59.
    [9] 万书勤,康跃虎,王丹,等.华北半湿润地区微咸水滴灌对番茄生长和产量的影响[J].农业工程学报,2008,24(8):30-35.
    [10] 万书勤,康跃虎,王丹,等.华北半湿润地区微咸水滴灌番茄耗水量和土壤盐分变化[J].农业工程学报,2008,24(10):29-33.
    [11] 郭仁松,林涛,徐海江,等.微咸水滴灌对绿洲棉田水盐运移特征及棉花产量的影响[J].水土保持学报,2017,31(1):211-216.
    [12] 邵建荣,张凤华,董艳,等.干旱区微咸水滴灌条件下典型土壤盐碱化影响因素研究[J].干旱地区农业研究,2015,33(6):216-221.
    [13] Incrocci L,Malorgio F,Della Bartola A,et al.The influence of drip irrigation or subirrigation on tomato grown in closedloop substrate culture with saline water[J].Scientia Horticulturae,2006,107:365-372.
    [14] Malash N,Flowers T J,Ragab R.Effect of irrigation systems and water management practices using saline and non-saline water on tomato production[J].Agricultural Water Management,2005,78:25-38.
    [15] Archlbald R D,Harper R J,Fox J E D,et al.Tree Performance and Root-Zone Salt Accumulation in Three Dryland Australian Plantations[J] .Agroforestry Systems,2006,66(3):191-204.
    [16] Crescimanno G,Garofalo P.Management of irrigation with saline water in cracking clay soils[J].Soil Science Society of America Journal,2006,70(5):1774-1787.
    [17] Ashraf M,Saeed M M.Effect of improved cultural practices on crop yield and soil salinity under relatively saline groundwater applications[J].Irrigation and Drainage Systems,2006,20(1):111-124.
    [18] 王春霞,王全九,刘建军,等.微咸水滴灌条件下土壤水盐分布特征试验研究[J].干旱地区农业研究,2010,28(6):30-35,57.
    [19] 王春霞,王全九,单鱼洋,等.微咸水滴灌下湿润锋运移特征研究[J].水土保持学报,2010,24(4):59-63.
    [20] 史晓楠,王全九,苏莹.微咸水水质对土壤水盐运移特征的影响[J].干旱区地理,2005,28(4):516-520.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700