地下埋藏目标与分层粗糙面复合散射探地雷达回波特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Echo characteristics of GPR detecting of multiple buried targets and layered rough interface
  • 作者:刘颖 ; 郭立新
  • 英文作者:LIU Ying;GUO Lixin;School of Physics and Optoelectronic Engineering, Xidian University;College of Electronic Engineering, Tianjin University of Technology and Education;
  • 关键词:探地雷达(GPR) ; 粗糙界面 ; 多个埋藏目标 ; 回波特性 ; 时域有限差分模型
  • 英文关键词:ground-penetrating radar;;rough interface;;multiple buried targets;;echo characteristics;;finite difference time domain model
  • 中文刊名:DBKX
  • 英文刊名:Chinese Journal of Radio Science
  • 机构:西安电子科技大学物理与光电工程学院;天津职业技术师范大学电子工程学院;
  • 出版日期:2019-01-17 10:03
  • 出版单位:电波科学学报
  • 年:2019
  • 期:v.34
  • 基金:国家自然科学基金创新研究群体科学基金(61621005);国家自然科学基金重点项目(61431010);; 天津职业技术师范大学科研发展基金(KJ1818)
  • 语种:中文;
  • 页:DBKX201901018
  • 页数:8
  • CN:01
  • ISSN:41-1185/TN
  • 分类号:115-122
摘要
为了更好地解译探地雷达(ground-penetrating radar, GPR)回波数据,建立了一种二维时域有限差分模型,用于模拟地下分层结构(混凝土层/粘土层)和多个埋藏目标(金属板/条、空洞、水/油管)的GPR探测.对于该模型,地下分层结构中的分界面设置为粗糙界面,采用电磁微分高斯脉冲作为GPR源,并用单轴完全匹配层介质对计算区域边界进行截断以模拟无界区域.通过数值计算得到了探地雷达B-scan扫描的回波仿真结果,并讨论了埋藏深度、几何形状、介电常数、电导率等对回波散射特性的影响,以及目标受其上方不同粗糙度的粗糙界面影响而产生的回波形态的改变.该结果中显示的各个回波的形态、方位、振幅强弱以及到达的时间均与模型中各个结构的外形、位置、媒质特性及埋藏深度相一致,验证了该计算模型的有效性.
        In order to better interpret the echo data of ground-penetrating radar(GPR), a two-dimensional finite difference time domain model is established to simulate the GPR detection of underground layered structure(concrete/clay layer) and multiple buried targets(metal plate or strip, hole, water or oil pipe). For the model, the interface in the underground layered structure is set to a rough interface, and the electromagnetic differential Gauss pulse is used as the GPR source. To simulate the unbounded scattered field existing in an infinite free space, the computing region is truncated by using the uniaxial perfectly matched layer medium. The simulation results of GPR B-scan echo are obtained by numerical calculation, the effects of target depth, geometry shape, permittivity and conductivity on the scattering characteristics are discussed, and the change of target echo shape produced by the influence of rough surface with different roughness on the target is analyzed. The results show that the shape, orientation, amplitude strength
引文
[1] 丁亚辉, 孙玉发, 朱金玉. 一种基于压缩感知的三维导体目标电磁散射问题的快速求解方法[J]. 物理学报, 2018, 67(10): 100201. DING Y H, SUN Y F, ZHU J Y. Compressed sensing based fast method of solving the electromagnetic scattering problems for three-dimensional conductor targets[J]. Acta physica sinica, 2018, 67(10): 100201. (in Chinese)
    [2] WANG A Q, GUO L X, CHAI C. Fast numerical method for electromagnetic scattering from an object above a large-scale layered rough surface at large incident angle: vertical polarization[J]. Applied optics, 2011, 50(4): 500-508.
    [3] 习建军, 曾昭发, 黄玲, 等. 阵列式探地雷达信号极化场特征[J]. 吉林大学学报(地球科学版), 2017, 47(2): 633-644. XI J J, ZENG Z F, HUANG L, et al. Characteristics of the signal polarization field in array type ground penetrating radar[J]. Journal of Jilin University (Earth science edition), 2017, 47(2):633-644. (in Chinese)
    [4] 李雪萍, 纪奕才, 卢伟, 等. 车载探地雷达信号在分层介质中的散射特性[J]. 物理学报, 2014, 63(4): 140-147. LI X P, JI Y C, LU W, et al. Characteristics of electromagnetic scattering from the vehicle-mounted ground penetrating radar in layered media[J]. Acta physica sinica, 2014, 63(4): 140-147. (in Chinese)
    [5] GIANNAKIS I, GIANNOPOULOS A, WARREN C. A realistic FDTD numerical modeling framework of ground penetrating radar for landmine detection[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2016, 9(1): 37-51.
    [6] 张彬, 戴前伟, 尹小波. 基于旋转交错网格的探地雷达正演数值模拟[J]. 中国有色金属学报, 2015, 25(7):1943-1952. ZHANG B, DAI Q W, YIN X B. GPR simulation based on rotated staggered grid[J]. The Chinese journal of nonferrous metals, 2015, 25(7): 1943-1952. (in Chinese)
    [7] 冯德山, 杨道学, 王珣. 插值小波尺度法探地雷达数值模拟及四阶Runge Kutta辅助微分方程吸收边界条件[J]. 物理学报, 2016, 65(23): 234102. FENG D S, YANG D X, WANG X. Ground penetrating radar numerical simulation with interpolating wavelet scales method and research on fourth-order Runge-Kutta auxiliary differential equation perfectly matched layer[J]. Acta physica sinica, 2016, 65(23): 234102. (in Chinese)
    [8] 齐超, 刘伟健, 张磊, 等. 二维分形表面电磁散射特性[J]. 哈尔滨工业大学学报, 2016, 48(3): 15-19. QI C, LIU W J, ZHANG L, et al. Electromagnetic scattering on two-dimensional fractal rough surface[J]. Journal of Harbin Institute of technology, 2016, 48(3): 15-19. (in Chinese)
    [9] SHENAWEE M E, RAPPAPORT C M. Modeling clutter from Bosnian and Puerto Rican rough ground surfaces for GPR subsurface sensing applications using the SDFMM[J]. Subsurface sensing technologies and applications, 2001, 2(3): 249-264.
    [10] 赵华, 郭立新. 高斯粗糙表面涂覆目标太赫兹散射特性[J]. 西安电子科技大学学报(自然科学版), 2018, 45(1): 23-29. ZHAO H, GUO L X. Electromagnetic scattering characteristic of Gaussian rough coated objects in terahertz[J]. Journal of Xidian University (science and technology), 2018, 45(1): 23-29. (in Chinese)
    [11] MORENTHALER A W, RAPPAPORT C M. The semianalytic mode matching algorithm for GPR wave scattering from multiple complex objects buried in a rough lossy dielectric half-space[J]. IEEE transactions on geoscience and remote sensing, 2011, 49(12): 4738-4742.
    [12] 邹高翔, 童创明, 高飞, 等. 复杂陆地粗糙面及其上方坦克目标复合散射研究[J]. 电波科学学报, 2017, 32(3): 261-272. ZOU G X, TONG C M, GAO F, et al. Composite electromagnetic scattering from tank target above complicated ground rough surface[J]. Chinese journal of radio science, 2017, 32(3): 261-272. (in Chinese)
    [13] RASHIDI-RANJBAR E, DEHMOLLAIAN M. Target above random rough surface scattering using a parallelized IPO accelerated by MLFMM[J]. IEEE geoscience and remote sensing letters, 2015, 12(7): 1481-1485.
    [14] BELLEZ S, BOURLIER C, KUBICKE G. 3-D Scattering from a PEC target buried beneath a dielectric rough surface: an efficient PILE-ACA algorithm for solving a hybrid KA-EFIE formulation[J]. IEEE transactions on antennas and propagation, 2015, 63(11): 5003-5014.
    [15] LIANG Y, GUO L X, WU Z S, et al. A study of composite electromagnetic scattering from an object near a rough sea surface using an efficient numerical algorithm[J]. IEEE antennas and wireless propagation letters, 2016, 15: 186-190.
    [16] SHENAWEE M E. Polarimetric scattering from two-layered two-dimensional random rough surfaces with and without buried objects[J]. IEEE transactions on geoscience and remote sensing, 2004, 42(1): 67-76.
    [17] 葛德彪, 闫玉波. 电磁波时域有限差分方法 [M]. 3版.西安: 西安电子科技大学出版社, 2011: 17-20.
    [18] JUNTUNEN J S, TSIBOUKIS T D. Reduction of numerical dispersion in FDTD method through artificial anisotropy[J]. IEEE transactions on microwave theory and techniques, 2000, 48(4): 582-588.
    [19] LI J, GUO L X, ZENG H. FDTD investigation on bistatic scattering from a target above two-layered rough surfaces using UPML absorbing condition[J]. Progress in electromagnetic research, 2008, 88: 197-211.
    [20] KUGA Y, PHU P. Experimental studies of millimeter wave scattering in discrete random media and from rough surfaces[J]. Progress in electromagnetics research, 1996, 14: 37-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700