GDT聚变中子源驱动的嬗变系统的初步物理设计与包层中子学分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preliminary Physical Design and Blanket Neutronics Analysis of a Transmutation System Driven by the Gas Dynamic Trap Based Fusion Neutron Source
  • 作者:曾秋孙 ; 邹小亮 ; 廉超 ; 陈德鸿 ; 王明煌 ; 陈志斌 ; 柏云清 ; 吴宜灿
  • 英文作者:ZENG Qiu-sun;ZOU Xiao-liang;LIAN Chao;CHEN De-hong;WANG Ming-huang;CHEN Zhi-bin;BAI Yun-qing;WU Yi-can;Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences;University of Science and Technology of China;
  • 关键词:嬗变系统 ; GDT(gas ; dynamic ; trap) ; 聚变中子源 ; 次临界包层
  • 英文关键词:Transmutation system;;Gas dynamic trap;;Fusion neutron source;;Sub-critical blanket
  • 中文刊名:HKXY
  • 英文刊名:Nuclear Science and Engineering
  • 机构:中国科学院核能安全技术研究所中子输运理论与辐射安全重点实验室;中国科学技术大学;
  • 出版日期:2018-04-15
  • 出版单位:核科学与工程
  • 年:2018
  • 期:v.38;No.150
  • 基金:国家自然科学基金(51406216,11405204);; 中国科学院信息化专项项目(XXH13506-104);; 国家磁约束核聚变能发展研究专项项目2014GB 112000
  • 语种:中文;
  • 页:HKXY201802006
  • 页数:8
  • CN:02
  • ISSN:11-1861/TL
  • 分类号:49-56
摘要
随着核裂变能的不断发展,在提供清洁能源的同时也带来了核废料处理的问题,特别是长寿命的高放射性核素安全处置变得越发重要,通过核嬗变处理核废料是一种公认的行之有效的方法。基于Gas Dynamic Trap(GDT)磁镜装置的聚变中子源具有物理与工程技术难度小、中子通量高、结构紧凑成本低的优点,非常适合作为嬗变系统的聚变驱动器。本文初步设计一套GDT聚变中子源驱动的次锕系核素嬗变系统,其中,GDT聚变中子源作为嬗变系统的驱动器,能够提供两个长度达4 m、总中子产额达5.23×10~(18) n/s的高中子通量区;次临界包层设计采用现有成熟的裂变反应堆技术。本文采用自主研发的中子输运设计与安全评价软件系统Super MC及混合评价核数据库HENDL进行了中子学计算及性能分析,初步分析结果表明该嬗变系统能够实现年处理95.1 kg的次锕系核素,嬗变支持比达到4.8,同时产生450 MW的电能,该嬗变系统具有较优的应用前景。
        As the number of the fission power plants increasing to provide carbon-free electricity, its byproduct that spent nuclear fuel is also accumulating. Safe disposal of the accumulated long-lived and high-level radioactive nuclear wastes become a growing problem throughout the world. Transmutation is considered as a possible way for reducing the volume and hazard of the radioactive waste. A transmutation system driven by gas dynamic trap(GDT) based fusion neutron source(FNS) is designed and analyzed preliminarily in this paper. The GDT-based FNS fusion driver has two 4 m length high neutron-zones with total neutron yield of 5.23×10~(18) n/s. The sub-critical blanket is designed based on the well-developed technologies of fission reactors. The preliminary numerical simulation and performance analysis of the fission blanket are performed by using the Super Multi-functional Calculation Program for Nuclear Design and Safety Evaluation(Super MC) and Hybrid Evaluated Nuclear Data Library(HENDL) developed by the FDS Team. The simulation results show the transmutation system can transmute about 95.1 kg minor actinides per year, which indicates the transmutation support ratio reaches 4.8,and produce about 450 MW of electricity power. Hence, this transmutation system has a good application prospect.
引文
[1]詹文龙,徐瑚珊.未来先进核裂变能——ADS嬗变系统[J].中国科学院院刊,2012,(03):375-381.
    [2]中国科学院“未来先进核裂变能——ADS嬗变系统”战略性先导科技专项研究团队.直面挑战追梦核裂变能可持续发展——“未来先进核裂变能——ADS嬗变系统”战略性先导科技专项及进展[J].中国科学院院刊,2015,(04):527-534+571.
    [3]吴宜灿.中国ADS铅基反应堆设计与研发进展[J].Engineering,2016,(01):262-277.
    [4]Wu Y,Zheng S,Zhu X,et al.Conceptual design of the fusion-driven subcritical system FDS-I[J].Fusion Engineering and Design,2006,81(8-14):1305-1311.
    [5]Wu Y,Jiang J,Wang M,et al.A fusion-driven subcritical system concept based on viable technologies[J].Nuclear Fusion,2011,51(10):103036.
    [6]吴宜灿,柯严,郑善良,等.聚变驱动次临界堆概念设计研究[J].核科学与工程,2004,(01):72-80.
    [7]李寿枬.高放废物的嬗变处置与不产生长寿命高放废物的先进核能系统[J].核科学与工程,1996,(03):269-273+273-283.
    [8]Wu Y.Progress in fusion-driven hybrid system studies in China[J].Fusion Engineering and Design,2002,63-64:73-80.
    [9]吴宜灿,邱励俭.聚变中子源驱动的次临界清洁核能系统──聚变能技术的早期应用途径[J].核技术,2000,(08):519-525.
    [10]Mirnov V V,Ryutov D D.Linear gasdynamic system for plasma confinement[J].Sov Tech Phys Lett,1979,5:279.
    [11]Ivanov A A,Prikhodko V V.Gas dynamic trap:experimental results and future prospects[J].Physics-Uspekhi,2017,60(5):509-533.
    [12]Ivanov A A,Prikhodko V V.Gas-dynamic trap:an overview of the concept and experimental results[J].Plasma Physics and Controlled Fusion,2013,55(6):063001.
    [13]吴宜灿,刘超,宋钢,等.强流氘氚聚变中子源HINEG设计研究[J].核科学与工程,2016,36(1):77-83.
    [14]陈德鸿,杜红飞,蒋洁琼,等.基于GDT的聚变裂变混合堆堆芯参数初步设计研究[J].核科学与工程,2012,32(1):63-67.
    [15]杜红飞,陈德鸿,蒋洁琼,等.基于GDT的14 Me V中子源初步设计研究[J].核科学与工程,2012,32(1):68-73.
    [16]Du H,Chen D,Duan W,et al.Physics analysis and optimization studies for a fusion neutron source based on a gas dynamic trap[J].Plasma Science and Technology,2014,16(12):1153-1157.
    [17]杜红飞.基于GDT的聚变中子源概念设计及其应用研究[D].合肥:中国科学院合肥物质科学研究院,2014.
    [18]Zeng Q,Chen D,Wang M.High-field neutral beam injection for improving the Q of a gas dynamic trap-based fusion neutron source[J].Nuclear Fusion,2017,57(12):126059.
    [19]Bagryansky P A,Anikeev A V,Denisov G G,et al.Overview of ECR plasma heating experiment in the GDT magnetic mirror[J].Nuclear Fusion,2015,55(5):053009.
    [20]Ryutov D D.Mirror type neutron source[J].Plasma Physics and Controlled Fusion,1990,32(11):999-1009.
    [21]Bagryansky P A,Ivanov A A,Kruglyakov E P,et al.Gas dynamic trap as high power 14 Me V neutron source[J].Fusion Engineering and Design,2004,70(1):13-33.
    [22]Anikeev A V,Bagryansky P A,Fischer U,et al.The GDT based neutron source as a driver in a sub-critical burner of radioactive wastes[J].Fusion Science and Technology,2011,59(1T):220-222.
    [23]Anikeev A V,Bagryansky P A,Beklemishev A D,et al.Progress in mirror-based fusion neutron source development[J].Materials,2015,8(12):8452-8459.
    [24]Anikeev A V,Prikhodko V V,Yurov D V.Parameters of a fusion neutron source based on the recent GDT experimental data and possible applications[J].Fusion Science and Technology,2015,68(1):70-75.
    [25]Molvik A,Ivanov A A,Kulcinski G L,et al.A Gas Dynamic Trap Neutron Source for Fusion Material and Subcomponent Testing[J].Fusion Science and Technology,2010,57(4):369-394.
    [26]Simonen T C.Extrapolation of GDT results to a neutron source for fusion materials testing[J].Fusion Science and Technology,2011,59(1T):36-38.
    [27]Fischer U,M?slang A,Ivanov A A.Assessment of the gas dynamic trap mirror facility as intense neutron source for fusion material test irradiations[J].Fusion Engineering and Design,2000,48(3–4):307-325.
    [28]Noack K,Rogov A,Anikeev A V,et al.The GDT-based fusion neutron source as driver of a minor actinides burner[J].Annals of Nuclear Energy,2008,35(7):1216-1222.
    [29]Dumaz P,Allegre P,Bassi C,et al.Gas-cooled fast reactors-status of CEA preliminary design studies[J].Nuclear Engineering and Design,2007,237(15-17):1618-1627.
    [30]Chen,D.Development and application of system analysis program for parameters optimization and economic assessment of fusion reactor(SYSCODE)[C].1st IAEA Technical Meeting on the Safety,Design and Technology of Fusion Power Plants3-5,May 2016 Vienna,Austria.
    [31]Huang Q,Li C,Li Y,et al.Progress in development of China Low Activation Martensitic Steel for fusion application[J].Journal of Nuclear Materials,2007,367:142-146.
    [32]Wu Y,Song J,Zheng H,et al.CAD-based Monte Carlo program for integrated simulation of nuclear system Super MC[J].Annals of Nuclear Energy,2015,82:161-168.
    [33]吴宜灿,宋婧,胡丽琴,等.超级蒙特卡罗核计算仿真软件系统Super MC[J].核科学与工程,2016,(01):62-71.
    [34]吴宜灿,邹俊,郝丽娟,等.混合评价核数据库系统HENDL3.0研发及其在先进核能系统设计中应用[J].核科学与工程,2017,(02):242-249.
    [35]Wu Y.Conceptual design of the China fusion power plant FDS-II[J].Fusion Engineering and Design,2008,83(10–12):1683-1689.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700