不同太阳能热化学储能体系的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress of different solar thermochemical energy storage systems
  • 作者:王新赫 ; 杜轩成 ; 魏进家
  • 英文作者:WANG XinHe;DU XuanCheng;WEI JinJia;State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University;School of Chemical Engineering and Technology, Xi'an Jiaotong University;
  • 关键词:太阳能热发电 ; 高温储能 ; 热化学储能 ; 热性能
  • 英文关键词:concentrating solar power plants;;high temperature energy storage;;thermochemical energy storage;;thermal performance
  • 中文刊名:KXTB
  • 英文刊名:Chinese Science Bulletin
  • 机构:西安交通大学能源与动力工程学院动力工程多相流国家重点实验室;西安交通大学化学工程与技术学院;
  • 出版日期:2017-11-10
  • 出版单位:科学通报
  • 年:2017
  • 期:v.62
  • 基金:高等学校博士学科点专项科研基金(20130201110043)资助
  • 语种:中文;
  • 页:KXTB201731010
  • 页数:12
  • CN:31
  • ISSN:11-1784/N
  • 分类号:113-124
摘要
太阳能热发电技术是缓解能源危机改善生态环境的重要技术,而储能系统是太阳能维持稳定和持续热发电的关键.本文从现有3种太阳能储热技术出发,分析了热化学储能具有的高储能密度和可实现大规模远距离存储和运输的明显优势,介绍了现有的5种热化学储能体系在反应机理、反应模型和反应器等方面的最新研究进展,并对各个体系的优缺点进行了评述.针对反应体系存在的问题,提出了未来几种储能体系主要的研究方向是循环性能的提高、高性能催化剂的制备、高效反应器的设计制造以及传热传质与化学反应耦合模型等.
        In recent years, traditional fossil fuels are constantly depleted, and the world is facing a serious energy crisis. Solar energy is a clean and abundant renewable energy resource which offers an option for solving the serious environmental problem caused by the consumption of the fossil energy. Among different forms of renewable energy, solar energy has also become an essential part of daily human life. Solar thermal power generation technology is regarded as one of the most potential power generation methods in the future. Solar thermal power generation technology is important to alleviate the energy crisis and to protect the ecological environment. Due to the intermittent of the solar energy, a conceivable way is to store it to provide the solar energy continuously. Thermal energy storage system is necessary for steady and continuous solar thermal power generation. In this paper, among the existing three kinds of solar thermal energy storage technology: sensible heat storage, latent heat storage system and thermochemical energy storage system, we analyzed the obvious advantages of thermochemical energy storage-high energy density and large scale storage and convenient remote transportation. The material or matrix chosen to act as solar thermochemical energy storage medium must meet the following criteria: high energy storage density, low charging temperature, higher rate of reaction, appropriate heat and mass transfer properties, easy to handle, low cost and thermal stability. According to these standards, we chose five suitable solar thermochemical energy storage systems, namely, methane reforming system, metal oxide system, metal hydride system, hydroxide system and amino thermochemical system. The latest research progress of the existing five kinds of thermochemical energy storage system were introduced on the reaction mechanism, reaction model and design of reactor by the numerical, experimental and technological study methods. Advantages and disadvantages of each system were analyzed. Based on the problems of reaction system, we put forward the main research directions of each thermochemical energy storage system. For methane reforming system, strengthening the heat transfer process in the reactor and the development of high performance catalysts or oxygen carriers are important. Furthermore, the combination of reforming reaction with methanation reaction to form energy storage cycle also need to develop. The problems of metal oxide system include too high temperature and high thermal hysteresis. Therefore, doped with other metal oxides may be a promising method. To improve the reaction rate of metal hydride system, the method of doping with other metal hydrides can also be carried out. The bottleneck of metal hydride system and the amino thermochemical system is too high hydrogen pressure, therefore the research on reactor structure for high efficient and low cost with large scale storage of hydrogen is necessary. The future research on hydroxide system should focus on the settlement of sintering and corrosion, so the particle design is important. In general, we pointed out that future research will mainly develop in two directions: greater scale and more detailed mechanism, specifically the construction of solar thermal energy storage demonstration system and a deeper and more detailed study of the mechanisms of heat and mass transfer coupling with chemical reaction.
引文
1 Zhang Y M.Solar Thermal Power Generation Technology(in Chinese).Beijing:Chemical Industry Press,2016.157-161[张耀明.太阳能热发电技术.北京:化学工业出版社,2016.157-161]
    2 Tian Y,Zhao C Y.A review of solar collectors and thermal energy storage in solar thermal applications.Appl Energy,2013,104:538-553
    3 Kuravi S,Trahan J,Goswami D Y,et al.Thermal energy storage technologies and systems for concentrating solar power plants.Prog Energy Combust Sci,2013,39:285-319
    4 Guo S,Yang Y,Li R,et al.Review of solar thermal power generation system(in Chinese).Sol Energy,2015,12:46-49[郭苏,杨勇,李荣.太阳能热发电储热系统综述.太阳能,2015,12:46-49]
    5 Pardo P,Deydier A,Anxionnaz-Minvielle Z,et al.A review on high temperature thermochemical heat energy storage.Renew Sust Energy Rev,2014,32:591-610
    6 Yang X P,Yang X X,Ding J,et al.Recent advances in the study of solar energy high-temperature heat power generation and accumulation technologies(in Chinese).J Eng Thermal Energy Power,2011,26:1-6[杨小平,杨晓西,丁静,等.太阳能高温热发电蓄热技术研究进展.热能动力工程,2011,26:1-6]
    7 Wu J,Long X F.Research progress of solar thermochemical energy storage(in Chinese).Chem Ind Eng Prog,2014,33:3238-3245[吴娟,龙新峰.太阳能热化学储能研究进展.化工进展,2014,33:3238-3245]
    8 Wang F,Ma L,Cheng Z,et al.Radiative heat transfer in solar thermochemical particle reactor:A comprehensive review.Renew Sust Energy Rev,2017,73:935-949
    9 Alonso E,Romero M.Review of experimental investigation on directly irradiated particles solar reactors.Renew Sust Energy Rev,2015,41:53-67
    10 Yadav D,Banerjee R.A review of solar thermochemical processes.Renew Sust Energy Rev,2016,54:497-532
    11 Edalatpour M,Aryana K,Kianifar A,et al.Solar stills:A review of the latest developments in numerical simulations.Sol Energy,2016,135:897-922
    12 Agrafiotis C,Roeb M,Sattler C.A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles.Renew Sust Energy Rev,2015,42:254-285
    13 Aydin D,Casey S P,Riffat S.The latest advancements on thermochemical heat storage systems.Renew Sust Energy Rev,2015,41:356-367
    14 Sun F,Peng H,Ling X.Progress in medium to high temperature thermochemical energy storage technologies(in Chinese).Energy Storage Sci Tech,2015,4:577-584[孙峰,彭浩,凌祥.中高温热化学反应储能研究进展.储能科学与技术,2015,4:577-584]
    15 Xie T,Yang B L.Advances of CO2 reforming of methane based on the solar energy storage(in Chinese).J Eng Thermal Energy Power,2016,35:1723-1732[谢涛,杨伯伦.基于太阳能蓄热过程的甲烷二氧化碳重整研究进展.化工进展,2016,35:1723-1732]
    16 Solymosi F,Kutsan G,Erdohelyi A.Catalytic reaction of CH4 With CO2 over alumina-supported Pt metals.Catal Lett,1991,11:149-156
    17 Sheu E J,Mokheimer E M,Ghoniem A F.A review of solar methane reforming systems.Int J Hydrogen Energy,2015,40:12929-12955
    18 Chen Y,Tang Y W,Liu C P,et al.Room temperature preparation of carbon supported Pt-Ru catalysts.J Power Sources,2006,161:470-473
    19 Zhang B M.High temperature-pressure reactor and dry reforming methane over carbon catalyst under pressure(in Chinese).Dissertation for Master Degree.Taiyuan:Taiyuan University of Technology,2010[张丙模.小型高温高压反应器及加压炭催化CH4/CO2重整研究.硕士学位论文.太原:太原理工大学,2010]
    20 Gokon N,Osawa Y,Nakazawa D,et al.Kinetics of CO2,reforming of methane by catalytically activated metallic foam absorber for solar receiver-reactors.Int J Hydrogen Energy,2009,34:1787-1800
    21 Gokon N,Yamawaki Y,Nakazawa D,et al.Kinetics of methane reforming over Ru/Γ-Al2O3-catalyzed metallic foam at 650-900°C for solar receiver-absorbers.Int J Hydrogen Energy,2011,36:203-215
    22 Buck R,Muir J F,Hogan R E.Carbon dioxide reforming of methane in a solar volumetric receiver/reactor:The caesar project.Sol Energy Mater,1991,24:449-463
    23 Skocypec R D,Hogan R E,Muir J F.Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish:Ⅱmodeling and analysis.Sol Energy,1994,52:479-490
    24 Chen Y,Ding J,Lu J F,et al.Experimental study on methane reforming with carbon dioxide for thermochemical energy storage(in Chinese).J Eng Thermophys,2014,8:1591-1594[陈源,丁静,陆建峰,等.甲烷二氧化碳重整热化学储能实验研究.工程热物理学报,2014,8:1591-1594]
    25 Lu J,Chen Y,Ding J,et al.High temperature energy storage performances of methane reforming with carbon dioxide in a tubular packed reactor.Appl Energy,2014,61:407-410
    26 Yu T,Yuan Q,Lu J,et al.Thermochemical storage performances of methane reforming with carbon dioxide in tubular and semi-cavity reactors heated by a solar dish system.Appl Energy,2015,185:1994-2004
    27 Du J,Hong Y X,Yang X X,et al.Studies on experiment and numerical simulation for CO2 reforming of CH4(in Chinese).Acta Energ Sin,2015,36:2765-2771[杜娟,洪宇翔,杨晓西,等.甲烷重整热化学储能实验及数值模拟研究.太阳能学报,2015,36:2765-2771]
    28 Wang F,Cheng Z,Tan J,et al.Energy storage efficiency analyses of CO2,reforming of methane in metal foam solar thermochemical reactor.Appl Therm Eng,2017,111:1091-1100
    29 Wang F,Tan J,Jin H,et al.Thermochemical performance analysis of solar driven CO2,methane reforming.Energy,2015,91:645-654
    30 Wang F,Guan Z,Tan J,et al.Unsteady state thermochemical performance analyses of solar driven steam methane reforming in porous medium reactor.Sol Energy,2015,122:1180-1192
    31 Du J.Catalytic reaction and transfer characteristics of chemical energy storage process by methane reforming(in Chinese).Dissertation for Doctoral Degree.Guangzhou:South China University of Technology,2013[杜娟.甲烷重整热化学储能过程催化反应及传输特性.博士学位论文.广州:华南理工大学,2013]
    32 Berman A,Karn R K,Epstein M.A new catalyst system for high-temperature solar reforming of methane.Energy Fuels,2006,20:455-462
    33 Gokon N,Oku Y,Kaneko H,et al.Methane reforming with CO2 in molten salt using Fe O catalyst.Sol Energy,2002,72:243-250
    34 Klein H H,Karni J,Rubin R.Dry methane reforming without a metal catalyst in a directly irradiated solar particle reactor.J Sol Energy Eng,2009,131:021001
    35 Carrillo A J,Serrano D P,Pizarro P,et al.Manganese oxide-based thermochemical energy storage:Modulating temperatures of redox cycles by Fe-Cu Co-doping.J Energy Storage,2016,5:169-176
    36 AndréL,Abanades S,Flamant G.Screening of thermochemical systems based on solid-gas reversible reactions for high temperature solar thermal energy storage.Renew Sust Energy Rev,2016,64:703-715
    37 Prieto C,Cooper P,Fernández A I,et al.Review of technology:Thermochemical energy storage for concentrated solar power plants.Renew Sust Energy Rev,2016,60:909-929
    38 Block T,Schmücker M.Metal oxides for thermochemical energy storage:A comparison of several metal oxide systems.Sol Energy,2016,126:195-207
    39 Alonso E,Gallo A,Pérezrábago C,et al.Thermodynamic study of Cu O/Cu2O and Co3O4/Co O redox pairs for solar energy thermochemical storage.In:Proceedings of AIP Conference.New York:AIP Publishing LLC,2016.1734:050004
    40 Zhang Z,Andre L,Abanades S.Experimental assessment of oxygen exchange capacity and thermochemical redox cycle behavior of Ba and Sr series perovskites for solar energy storage.Sol Energy,2016,134:494-502
    41 Carrillo A J,Moya J,Bayón A,et al.Thermochemical energy storage at high temperature via redox cycles of Mn and Co oxides:Pure oxides versus mixed ones.Sol Energy Mater Sol Cells,2014,123:47-57
    42 Schrader A J,Muroyama A P,Loutzenhiser P G.Solar electricity via an air brayton cycle with an integrated two-step thermochemical cycle for heat storage based on Co3O4/Co O redox reactions:Thermodynamic analysis.Sol Energy,2015,118:485-495
    43 Karagiannakis G,Pagkoura C,Halevas E,et al.Cobalt/cobaltous oxide based honeycombs for thermochemical heat storage in future concentrated solar power installations:Multi-cyclic assessment and semi-quantitative heat effects estimations.Sol Energy,2016,133:394-407
    44 Muthusamy J P,Calvet N,Shamim T.Numerical investigation of a metal-oxide reduction reactor for thermochemical energy storage and solar fuel production.Energy Procedia,2014,61:2054-2057
    45 Koepf E,Villasmil W,Meier A,et al.Pilot-Scale solar reactor operation and characterization for fuel production via the Zn/Zn O thermochemical cycle.Appl Energy,2016,165:1004-1023
    46 Caldwell R,Mcdonald J,Pietsch A.Solar-energy receiver with lithium-hydride heat storage.Sol Energy,1965,9:48-60
    47 Bogdanovic B,Hofmann H,Neuy A,et al.Nidoped versus undoped mgemgh materials for high temperature heat or hydrogen storage.JAlloys Compd,1999,292:57-71
    48 Reiser A,Bogdanovic B,Schlichte K.The application of mgbased metal-hydrides as heat energy storage systems.Int J Hydrogen Energy,2000,25:425-430
    49 Sheppard D,Paskevicius M,Buckley C.Thermodynamics of hydrogen desorption from namgh3 and its application as a solar heat storage medium.Chem Mater,2011,23:4298-4300
    50 Sheppard D,Corgnale C,Hardy B,et al.Hydriding characteristics of namgh2f with preliminary technical and cost evaluation of magnesium-based metal hydride materials for concentrating solar power thermal storage.Rsc Adv,2014,51:26552-26562
    51 Aswin N,Dutta P,Murthy S S.Screening of metal hydride pairs for closed thermal energy storage systems.Appl Therm Eng,2016,109:949-957
    52 Corgnale C,Hardy B,Motyka T,et al.Metal hydride based thermal energy storage system requirements for high performance concentrating solar power plants.Int J Hydrogen Energy,2016,41:20217-20230
    53 Corgnale C,Hardy B,Motyka T,et al.Screening analysis of metal hydride based thermal energy storage systems for concentrating solar power plants.Renew Sust Energy Rev,2014,38:821-833
    54 Selvam P K,Muthukumar P,Linder M,et al.Measurement of thermochemical properties of some metal hydrides-Titanium(Ti),Misch Metal(Mm)and Lanthanum(La)based alloys.Int J Hydrogen Energy,2013,38:5288-5301
    55 SoléA,Fontanet X,Barreneche C,et al.Requirements to consider when choosing a thermochemical material for solar energy storage.Sol Energy,2013,97:398-404
    56 Long X F,Wu J.Thermal decomposition kinetics of thermochemical energy storage system Ca(OH)2/Ca O(in Chinese).J South China Univ Tech,2014,42:75-81[龙新峰,吴娟.热化学储能体系Ca(OH)2/Ca O的分解动力学.华南理工大学学报,2014,42:75-81]
    57 Criado Y A,Alonso M,Abanades J C.Enhancement of a Ca O/Ca(OH)2 based material for thermochemical energy storage.Sol Energy,2016,135:800-809
    58 Sakellariou K G,Karagiannakis G,Criado Y A,et al.Calcium oxide based materials for thermochemical heat storage in concentrated solar power plants.Sol Energy,2015,122:215-230
    59 Yan J,Zhao C Y.First-principle study of Cao/Ca(OH)2 thermochemical energy storage system by Li or Mg cation doping.Chem Eng Sci,2014,117:293-300
    60 Yan J,Zhao C Y.Thermodynamic and kinetic study of the dehydration process of Ca O/Ca(OH)2,thermochemical heat storage system with Li doping.Chem Eng Sci,2015,138:86-92
    61 Yan J,Zhao C Y.Experimental study of Ca O/Ca(OH)2 in a fixed-bed reactor for thermochemical heat storage.Appl Energy,2016,175:277-284
    62 Wang W,Kolditz O,Nagel T.Parallel finite element modelling of multi-physical processes in thermochemical energy storage devices.Appl Energy,2016,185:1954-1964
    63 Chacartegui R,Alovisio A,Ortiz C,et al.Thermochemical energy storage of concentrated solar power by integration of the calcium looping process and a CO2,power cycle.Appl Energy,2016,173:589-605
    64 Pardo P,Anxionnaz-Minvielle Z,RougéS,et al.Ca(OH)2/Cao reversible reaction in a fluidized bed reactor for thermochemical heat storage.Sol Energy,2014,107:605-616
    65 Lovegrove K,Luzzi A,Soldiani I,et al.Developing ammonia based thermochemical energy storage for dish power plants.Sol Energy,2004,76:331-337
    66 Lovegrove K,Burgess G,Pye J.A new 500 m2 paraboloidal dish solar concentrator.Sol Energy,2011,85:620-626
    67 Michalsky R,Pfromm P H.Chromium as reactant for solar thermochemical synthesis of ammonia from steam,nitrogen,and biomass at atmospheric pressure.Sol Energy,2011,85:2642-2654
    68 Michalsky R,Parman B J,Amanor-Boadu V,et al.Solar thermochemical production of ammonia from water,air and sunlight:Thermodynamic and economic analyses.Energy,2012,42:251-260

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700