色散管理光纤激光器中束缚态孤子动力学演化特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamics evolution characteristics of bound state solitons in dispersion-managed fiber laser
  • 作者:王瀚霄 ; 李雷 ; 赵鹭明
  • 英文作者:Wang Hanxiao;Li Lei;Zhao Luming;Jiangsu Key Laboratory of Advanced Laser Materials and Devices,School of Physics and Electronic Engineering,Jiangsu Normal University;
  • 关键词:束缚态孤子 ; 色散管理 ; 相位差
  • 英文关键词:bound states solitons;;dispersion-managed;;phase difference
  • 中文刊名:HWYJ
  • 英文刊名:Infrared and Laser Engineering
  • 机构:江苏师范大学物理与电子工程学院江苏省先进激光材料与器件重点实验室;
  • 出版日期:2018-08-25
  • 出版单位:红外与激光工程
  • 年:2018
  • 期:v.47;No.286
  • 基金:国家自然科学基金(61405079)
  • 语种:中文;
  • 页:HWYJ201808009
  • 页数:5
  • CN:08
  • ISSN:12-1261/TN
  • 分类号:68-72
摘要
光孤子脉冲在光纤中传输时由于复杂的非线性相互作用可以形成稳定的孤子束缚态形式,脉冲间的相位关系变化揭示出非线性系统中孤子丰富的动力学特性。通过金兹堡朗道方程描述光孤子在光纤激光器中的传输规律,数值分析了色散管理光纤激光器中系统参量对于束缚态孤子相位突变的影响。研究发现,光纤激光器在相空间中存在多种形式的孤子束缚态,系统的初始状态对于孤子最终状态的演化具有重要的影响。数值分析表明:激光器系统泵浦强度的变化,不仅导致孤子脉冲时间间距的变化,也会导致孤子束缚态的相位差,这对于深入了解光纤中光孤子的动力学过程具有重要的研究意义。
        As optical solitons propagate along the fiber, stable bound state solitons can be formed due to complex nonlinear interactions, and phase variation of bound state solitons reveals abundant dynamics in the nonlinear system. Based on the Ginzburg-Landau equation governing the evolution of solitons along the fiber, the dynamics of soliton phase variation induced by the system parameters was numerically studied. It was found that there exist different bound state solitons, and initial conditions finally converge to bound state solitons with different phase difference. The results also indicate that the change of pump strength influences the pulse separation of solution as well as phase difference of bound state, which is of importance for in-depth understanding of the underlying nonlinear interaction mechanism.
引文
[1]Gordon J P.Interaction forces among solitons in optical fibers[J].Optics Letters,1983,8(11):596-598.
    [2]Mitschke F M,Mollenauer L F.Experimental observation of interaction forces between solitons in optical fibers[J].Optics Letters,1987,12(5):355-357.
    [3]Malomed B A.Bound solitons in the nonlinear Schr觟dingerGinzburg-Landau equation[J].Physical Review A,1991,44(10):6954-6957.
    [4]Akhmediev N N,Ankiewicz A,Sotocrespo J M.Stable soliton pairs in optical transmission lines and fiber lasers[J].Journal of the Optical Society of America B,1998,15(15):515-523.
    [5]Tang D Y,Zhao L M,Zhao B.Multipulse bound solitons with fixed pulse separations formed by direct soliton interaction[J].Applied Physics B,2005,80(2):239-242.
    [6]Gui L,Xiao X,Yang C.Observation of various bound solitons in a carbon-nanotube-based erbium fiber laser[J].Journal of the Optical Society of America B,2013,30(30):158.
    [7]Liu X M,Han X X,Yao X K.Discrete bisoliton fiber laser[J].Scientific Reports,2016,6:34414.
    [8]Li L,Ruan Q,Yang R,et al.Bidirectional operation of 100 fs bound solitons in an ultra-compact mode-locked fiber laser[J].Optics Express,2016,24(18):21020.
    [9]Zavyalov A,Iliew R,Egorov O,et al.Discrete family of dissipative soliton pairs in mode-locked fiber lasers[J].Physical Review A,2009,79(5):1744-1747.
    [10]Liu X.Dynamic evolution of temporal dissipative-soliton molecules in large normal path-averaged dispersion fiber lasers[J].Physical Review A,2010,82(6):13442-13444.
    [11]Li X,Wang Y,Zhao W,et al.Numerical investigation of soliton molecules with variable separation in passively mode-locked fiber lasers[J].Optics Communications,2012,285(6):1356-1361.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700