弯曲和旋转修正的湍流模型在旋转翼身组合弹箭中的应用研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:An assessment of rotation and curvature correction for turbulence models for spinning projectile
  • 作者:石磊 ; 杨云军 ; 周伟江
  • 英文作者:SHI Lei;YANG Yunjun;ZHOU Weijiang;China Academy of Aerospace Aerodynamics;
  • 关键词:弯曲和旋转修正 ; 湍流模型 ; 翼身组合 ; 旋转弹箭 ; SSTRC
  • 英文关键词:rotation and curvature correction;;turbulence model;;wing-body combination;;spinning projectile;;SSTRC
  • 中文刊名:KQDX
  • 英文刊名:Acta Aerodynamica Sinica
  • 机构:中国航天空气动力技术研究院;
  • 出版日期:2018-08-15
  • 出版单位:空气动力学学报
  • 年:2018
  • 期:v.36;No.171
  • 基金:国家自然科学基金(11772317)
  • 语种:中文;
  • 页:KQDX201804010
  • 页数:7
  • CN:04
  • ISSN:51-1192/TK
  • 分类号:84-90
摘要
为了研究高速旋转产生的流线弯曲及壁面强湍流剪切效应,本文采用完全时间相关的非定常N-S方程,对超声速带翼旋转弹箭开展计算,研究了弯曲和旋转修正的湍流模型SARC和SSTRC对弹箭旋转气动特性和流场结构产生的影响。结果表明:对全弹侧向动态特性计算,弯曲和旋转修正的湍流模型与原始模型精度相当,侧向力和力矩旋转导数最大差异<6%,4组经验估算公式计算的马格努斯力旋转导数与本文结果误差皆>15%。弯曲和旋转修正的湍流模型使物面压力左右两侧同时偏大或偏小,与原始模型相比并没有加剧或削弱不对称效应,这是全弹马格努斯特性变化不大的原因。弯曲和旋转修正湍流模型预测的分离区更大,对分离流动的抑制能力减弱。
        Streamline curvature and strong stress effects in boundary layer appear when projectile undergoes system rotation.Corrected turbulence models(SARC,SSTRC)and original turbulence models(SA,SST)based on time dependent Reynolds average Naiver-Stokes(RANS)are used to simulate the flow field around a spinning projectile.The maximum dispersion of dynamic derivatives from corrected and original turbulence models is less than 6%,both having a good agreement with the AEDC experiment data and ARL computational data.Four estimation methods are used to verify the applicability for wing-body combination profile,and the comparison shows that satisfactory results are not obtained by the estimation methods.Symmetric distortion of circumferential surface pressure is the fundamental reason for the coincidence between corrected and original turbulence models.The separation zones computed by corrected turbulence models are larger.The inhibition strength for flow separation indicates that original turbulence models are better than corrected models.
引文
[1] Deng F,Chen SS,Tao G.CFD analysis of roll damping derivatives for missile with grid fins at supersonic speeds[J].Acta Aerodynamica Sinica,2012,30(2):151-156.(in Chinese)邓帆,陈少松,陶钢.带栅格翼导弹超声速阶段滚转阻尼导数的数值研究[J].空气动力学学报,2012,30(2):151-156.
    [2] Lei J M,Li T T,Huang C.A numerical investigation of Magnus effect for high-speed spinning projectile[J].Acta Armamentarii,2013,34(6):719-725.(in Chinese)雷娟棉,李田田,黄灿.高速旋转弹丸马格努斯效应数值研究[J].兵工学报,2013,34(6):719-725.
    [3] Launder B E,Tselepidakis D,Younis B.A second-moment closure study of rotating channel flow[J].Journal of Fluid Mechanics,1987,183:63-75.
    [4] Shur M,Spalart P R.Comparative numerical testing of one and two equation turbulence models for flows with separation and reattachment[R].AIAA 95-0863,1995.
    [5] Howard J,Patankar S,Bordynuik R.Flow prediction in rotating ducts using coriolis modified turbulence models[J].Journal of Fluids Engineering,1980,102(2):456-461.
    [6] Park S V,Chung M K.Curvature dependent two equation model for prediction of turbulent recirculating flows[J].AIAA Journal,1989,27(3):340-344.
    [7] Hellsten A.On the solid wall boundary condition ofωin the k-ωtype turbulence models[R].Helsinki University of Technology,Laboratory of Aerodynamics,Report B-50,Series B,1998.
    [8] Cazalbou J,Chassaing P,Dufour G,et al.Two equation modeling of turbulent rotating flow[J].Physics of Fluids,2005,17(4):1-14.
    [9] Wicox D.Reassessment of the scale-determining equation for advanced turbulence models[J].AIAA Journal,1988,26(11):1299-1310.
    [10]Spalart P R,Shur M L.On the sensitization of turbulence models to rotation and curvature[J].Aerospace Science and Technology,1997,1(5):297-302.
    [11]Shur M L,Strejets M K,Travin A,et al.Turbulence modeling in rotating and curved channels:assessing the spalart shur correction[J].AIAA Journal,2000,38(5):784-792.
    [12] Hellsten A.Some Improvements in Menter’s k-ωSST turbulence model[R].AIAA 98-2554,1998.
    [13] Mani A,Ladd J A,Bower W W.An assessment of rotation and curvature correction for one and tow equation turbulence models for compressible impinging jet flows[R].AIAA 2000-2406,2000.
    [14] Mani A,Ladd J A,Bower W W.Rotation and curvature correction assessment for one and two equation turbulence models[J].Journal of Aircraft,2004,41(2):269-273.
    [15]Sunil K A,Paul A D.Incorporating rotation and curvature effects in scalar eddy viscosity models[R].AIAA 2012-3283,2012.
    [16]Nash N A,Fred H P,Perry R B.Numerical simulation of the aircraft wake vortex flowfield[R].AIAA 2013-2552,2013.
    [17]Rumsey C L,Lee-Rausch E M.NASA trapezoidal wing computations including transition and advanced turbulence modeling[J].Journal of Aircraft,2015,52(2):210-232.
    [18]Li W D,Zhou F D,Wei X J,et al.The modified k-εmodel for numerical simulation of swirling velocity field[J].Journal of Northwest Institute of Textile Science and Technology,1997,11:56-59.(in Chinese)李卫东,周芳德,魏小进,等.旋流流场数值模拟的修正k-ε模型[J].西北纺织工学院学报,1997,11:56-59.
    [19]Leroy M J.Experimental roll-damping,magnus,and static stability characteristics of two slender missile configurations at high angles of attack(0to 90 Deg)and Mach number 0.2through 2.5[R].AEDC-TR-76-58,1976.
    [20]Vishal A B.Numerical prediction of roll damping and magnus dynamic derivatives for finned projectiles at angle of attack[R].AIAA 2012-2905,2012.
    [21]Jacobson I D.Magnus characteristics of arbitrary rotating bodies[R].AD771737,1973.
    [22] Wu C Q.An estimation method for supersonic spinning projectile[J].Acta Armamentarii,1986,3:24-34.(in Chinese)吴承清.超声速旋转炮弹马格努斯特性的一种工程算法[J].兵工学报,1986,3:24-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700