吸气式空空导弹FADS系统标定研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on calibration of FADS system for air-breathing air-to-air missile
  • 作者:陈广强 ; 豆修鑫 ; 杨云军 ; 周伟江 ; 豆国辉
  • 英文作者:Chen Guangqiang;Dou Xiuxin;Yang Yunjun;Zhou Weijiang;Dou Guohui;Institute of Theoretical and Applied Aerodynamics,China Academy of Aerospace Aerodynamics;
  • 关键词:吸气式空空导弹 ; 嵌入式大气数据传感系统 ; 风洞试验标定 ; 台阶波
  • 英文关键词:air-breathing air-to-air missile;;FADS system;;wind tunnel calibration;;step shock wave
  • 中文刊名:LTLC
  • 英文刊名:Journal of Experiments in Fluid Mechanics
  • 机构:中国航天空气动力技术研究院空气动力理论与应用研究所;
  • 出版日期:2018-10-15
  • 出版单位:实验流体力学
  • 年:2018
  • 期:v.32;No.145
  • 基金:国家自然科学基金项目(11472258,11372040)
  • 语种:中文;
  • 页:LTLC201805013
  • 页数:7
  • CN:05
  • ISSN:11-5266/V
  • 分类号:91-97
摘要
针对自主研发的吸气式空空导弹FADS系统,利用FD-12风洞对其进行了标定研究。分析了风洞标定试验的技术特点,提出一种采用变支杆长度方法避开风洞试验台阶波的标定方案,包括支杆设计、模型加工、安装以及测压管路气密性检测等,在风洞中完成标定试验。试验结果表明:在Ma2.0~3.5范围内,FADS系统的测量误差精度全部达到设计目标,其中静压误差≤490Pa(≤3%)、马赫数误差≤0.1、迎角和侧滑角误差≤0.5°;与首次标定相比,各来流参数测量误差均减小,特别是Ma2状态下,静压最大相对误差由11.5%降低到3.0%,马赫数最大误差由0.15下降到0.10,迎角最大误差由2.5°降低到0.5°,侧滑角最大误差由1.2°降低到0.5°。研究结果可为FADS系统设计提供技术参考。
        Aiming at the independently developed FADS system of the air-breathing air-to-air missile,the calibration is carried out by FD-12 wind tunnel.The technical characteristics of the wind tunnel calibration test are analyzed.The wind tunnel calibration scheme is proposed to avoid the step shock wave by using the variable length pole,mainly including the pole design,machining and installation of the model and the air tightness detection of the pressure pipe.The second calibration is done in FD-12 wind tunnel.The experimental results show that:in the range of Mach number from 2.0~3.5,the measurement error of FADS system achieves the design goal:the error of the static pressure is less than 490 Pa(less than 3%),the error of Mais less than 0.1,and both errors of the angle of attack and the angle of side slip are less than 0.5°.Compared with the calibration at first time,the errors of the flow parameter measurements are all reduced,especially for the Ma2 status where the maximum relative error of the static pressure decreases from11.5%to 3.0%,the maximum error of Ma decreases from 0.15 to 0.10,the maximum error of angle of attack decreases from 2.5°to 0.5°,and the maximum error of angle of side slip decreases from1.2°to 0.5°.The research results can provide technical reference for the design of FADS system.
引文
[1]Karlgaard C,Kutty P,Schoenenberger M,et al.Mars entry atmospheric data system trajectory reconstruction algorithms and flight results[R].AIAA-2013-28,2013.
    [2]Baumann E,Pahle J W,Davis M C,et al.X-43Aflush airdata sensing system flight-test results[R].AIAA-2008-657,2008.
    [3]Ellsworth J C,Whitmore S A.Simulation of a flush air-data system for transatmospheric vehicles[J].Journal of spacecraft and rocket,2008,45(4):716-73.
    [4]柏楠,时兆峰,苑景春,等.嵌入式大气数据传感技术研究[J].飞航导弹,2010,8:79-85.
    [5]方习高,陆宇平.嵌入式大气数据传感系统的求解算法研究[J].计算机测量与控制,2008,16(3):398-400.Fang X G,Lu Y P.Research on algorithms of flush airdata sensing system[J].Computer Measurement&Control,2008,16(3):398-400.
    [6]杨雨,陆宇平,吴在桂.嵌入式大气数据传感系统中的组合滤波技术[J].传感器与微系统,2009,28(5):117-120.Yang Y,Lu Y P,Wu Z G.Combination filter technology in flush air data sensing system[J].Transducer and Microsystem Technologies,2009,28(5):117-120.
    [7]沈国清,陆宇平,徐志晖.嵌入式大气数据传感系统误差分析[J].传感器与微系统,2012,31(6):62-65.Shen G Q,Lu Y P,Xu Z H.Error analysis of flush air data sensing system[J].Transducer and Microsystem Technologies,2012,31(6):62-65.
    [8]赵磊,陆宇平.基于RBF神经网络的FADS系统及其算法研究[J].飞机设计,2012(1):43-47.Zhao L,Lu Y P.Research of algorithms of flush airdate sensing system based on RBF neural network[J].Aircraft Design,2012(1):43-47.
    [9]李其畅,刘劲帆,刘昕,等.嵌入式大气数据三点解算方法初步研究[J].空气动力学学报,2014,32(3):360-363.Li Q C,Liu J F,Liu X,et al.The primary study of 3-point calculation method for the flush air data system[J].Acta Aerodynamica Sinica,2014,32(3):360-363.
    [10]李清东,陈璐璐,张孝功,等.FADS快速智能故障检测和诊断技术[J].系统工程与电子技术,2009,31(10):2544-2546.Li Q D,Chen L L,Zhang X G,et al.Flush airdata sensing system fast intelligent fault detection and diagnosis technology[J].Systems Engineering and Electronics,2009,31(10):2544-2546.
    [11]王鹏,金鑫,张卫民.FADS系统在各型号飞行器中的应用[J].飞航导弹,2013,2:75-79.
    [12]王鹏,李秋红,胡远思,等.尖楔前体飞行器FADS-α的求解精度研究[J].中国科学:物理学力学天文学,2015,45(12):124709.Wang P,Li Q H,Hu Y S,et al.Research on solving accuracy for FADS-αapplied to the vehicle with sharp wedged forebodies[J].Sci Sin:Phys Mech Astron,2015,45(12):124709.
    [13]王鹏,金鑫,张卫民.FADS系统在尖楔前体高超声速飞行器中的应用[J].中国科学:物理学力学天文学,2013,43(9):1105-1110.Wang P,Jin X,Zhang W M.Application of FADS system in hypersonic flight vehicles with sharp wedged fore-bodies[J].Sci Sin:Phys Mech Astron,2013,43(9):1105-1110.
    [14]秦永明,张春,董金刚.嵌入式大气数据传感系统风洞标定试验研究[J].空气动力学学报,2015,33(4):488-492.Qin Y M,Zhang C,Dong J G.Experimental Study on flush air data sensing system calibration in wind tunnel[J].Acta Aerodynamica Sinica,2015,33(4):488-492.
    [15]陈广强,刘吴月,豆修鑫,等.吸气式空空导弹FADS系统设计[J].中国科学:技术科学,2016,46(11):1193-1206.Chen G Q,Liu W Y,Dou X X,et al.Flush air data sensing system design for air breathing air-to-air missile[J].Sci Sin Tech,2016,46(11),1193-1206.
    [16]陈广强,王贵东,陈冰雁,等.低成本飞行试验平台FADS技术研究[J].宇航学报,2015,36(10):1195-1202.Chen G Q,Wang G D,Chen B Y,et al.Study of flush air data system technology for low cost flight test platform[J].Journal of Astronautics,2015,36(10):1195-1202.
    [17]陈广强,王贵东,陈冰雁,等.高超声速飞行器FADS算法研究[J].飞机设计,2015,35(6):1-7.Chen G Q,Wang G D,Chen B Y,et al.Study of flush air data system algorithms for hypersonic vehicle[J].Aircraft Design,2015,35(6):1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700