改性石墨烯/介电弹性体的制备及传感性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and Sensing Property of Modified Graphene/Dielectric Elastomer
  • 作者:许博皓 ; 杨会歌 ; 刘旭影 ; 代坤 ; 王猛 ; 钱彬彬 ; 陈金周
  • 英文作者:XU Bo-hao;YANG Hui-ge;LIU Xu-ying;DAI Kun;WANG Meng;QIAN Bin-bin;CHEN Jin-zhou;Zhengzhou University;
  • 关键词:改性石墨烯 ; 介电弹性体 ; 介电传感
  • 英文关键词:modified graphene;;dielectric elastomer;;dielectric sensing
  • 中文刊名:BZGC
  • 英文刊名:Packaging Engineering
  • 机构:郑州大学;
  • 出版日期:2017-07-10
  • 出版单位:包装工程
  • 年:2017
  • 期:v.38;No.355
  • 基金:郑州大学博士人才基金(F0000907)
  • 语种:中文;
  • 页:BZGC201713015
  • 页数:4
  • CN:13
  • ISSN:50-1094/TB
  • 分类号:61-64
摘要
目的制备具有优异介电性能,可用于传感器的热塑性聚氨酯弹性体复合材料。方法使用十八烷基胺修饰氧化石墨烯片层,通过热处理工艺部分还原改性后的氧化石墨烯,利用溶液混合法将改性石墨烯分散到热塑性聚氨酯的基体中,通过絮凝-热压的方法成形,并测试其结构、介电性能及传感性能。结果十八烷基胺通过共价键的形式接枝到氧化石墨烯表面,X射线衍射表明,十八烷基胺通过表面接枝改性,增大了石墨烯片层的层间距。结论改性石墨烯填充的介电弹性体具有较高的介电常数和较低的介电损耗,且表现出良好的弯曲形变-介电敏感响应。
        The work aims to fabricate thermoplastic polyurethane elastomer composites with superior dielectric properties used for sensors. Octadecylamine was used to modify the oxidized graphene lamella. The oxidized graphene was partly reduced and modified through the technology of heat treatment. The modified graphene was dispersed into the matrix of thermoplastic polyurethane in the solution blending method and then formed by means of flocculation-hot pressing. Structures, dielectric properties and sensing properties of this material were tested. The octadecylamine was grafted to the oxidized graphene surface in the form of covalent bond. The X-ray diffraction showed that the octadecylamine modified through surface grafting increased the lamellar spacing. The dielectric elastomer filled with the modified graphene has higher dielectric constant and lower dielectric loss, and it exhibits good bending deformation-dielectric sensitive response.
引文
[1]党智敏,赵军,任粒.介电高分子复合材料研究新进展[J].功能材料信息,2014,11(4):7—13.DANG Zhi-min,ZHAO Jun,REN Li.Advances and Research on Dielectric Polymer Composites[J].Functional Materials Information,2014,11(4):7—13.
    [2]曹开东,张平,喻建明,等.聚氨酯弹性体介电性能的研究[J].聚氨酯工业,2013,28(5):8—11.CAO Kai-dong,ZHANG Ping,YU Jian-ming,et al.Research on Dielectric Properties of Polyurethane Elastomer[J].Polyurethane Industry,2013,28(5):8—11.
    [3]田明,白雪,杨丹,等.弹性体材料的高性能和功能性改性[J].高分子学报,2012(5):490—497.TIAN Ming,BAI Xue,YANG Dan,et al.High Performance and Functionality Modification of Elastomer Materials[J].Acta Polymer Sinica,2012(5):490—497.
    [4]许博皓,杨会歌,陈金周.功能性石墨烯改善聚合物介电性能的研究进展[J].包装工程,2017,38(1):7—12.XU Bo-hao,YANG Hui-ge,CHEN Jin-zhou.Research Progress of Functional Graphene Used to Improve the Dielectric Properties of the Polymer[J].Packaging Engineering,2017,38(1):7—12.
    [5]谢元仲,徐淑艳,张维丽,等.石墨烯/聚乳酸复合材料的制备与性能研究[J].包装工程,2016,37(9):7—11.XIE Yuan-zhong,XU Shu-yan,ZHANG Wei-li,et al.Preparation and Properties of Graphene and Polylactic Acid Composites[J].Packaging Engineering,2016,37(9):7—11.
    [6]DANG Z M,ZHENG M S,ZHA J W.1D/2D Carbon Nanomaterial-Polymer Dielectric Composites with High Permittivity for Power Energy Storage applications[J].Small,2016,12(13):1688—1701.
    [7]LIU S T,TIAN M,YANB B Y,et al.High Performance Dielectric Elastomers by Partially Reduced Graphene Oxide and Disruption of Hydrogen Bonding of Polyurethanes[J].Polymer,2015(6):375—384.
    [8]PARK S,RUOFF S R.Chemical Methods for the Production of Graphenes[J].Nature Nanotechnology,2010,4(4):217—224.
    [9]朱婷.热塑性聚氨酯/功能化石墨烯纳米复合材料的制备与性能研究[D].郑州:郑州大学,2016.ZHU Ting.Preparation and Property of Thermoplastic Polyurethane/Functionalized-Graphene Nanocomposite Material[D].Zhengzhou:Zhengzhou University,2016.
    [10]LIU H,GAO J C,HUNG W J,et al.Electrically Conductive Strain Sensing Polyurethane Nanocomposites with Synergistic Carbon Nanotubes and Graphene Bifillers[J].Nanoscale,2016,26(8):77—89.
    [11]LOH K P,BAO Q L,ANG P K,et al.The Chemistry of Graphene[J].Journal of Material Chemistry,2010,20(12):2277—2289.
    [12]TIAN M,WEI Z Y,ZAN X Q,et al.Thermally Expanded Graphene Nanoplates/polydimethylsiloxane Composites with High Dielectric Constant,Low Dielectric Loss and Improved Actuated Strain[J].Composites Science and Technology,2014(9):37—44.
    [13]YANG X Y,MEI T,YANG J,et al.Synthesis and Characterization of Alkylamine-functionalized Graphene for Polyolefin-based Nnanocomposites[J].Applied Surface Science,2014(3):725—731.
    [14]CHEN H,XIAO L,XU Y,et al.A Novel Nanodrag Reducer for Low Permeability Reservoir Water Flooding:Long-Chain Alkylamines Modified Graphene Oxide[J].Journal of Nanomaterials,2016(1):1—9.
    [15]TAPAS K,PARTHA K,ANATA K M,et al.Functionalized-graphene/ethylene Vinyl Acetate Co-polymer Composites for Improved Mechanical and Thermal Properties[J].Polymer Testing,2012,31(2):282—289.
    [16]NAN C W,SHEN Y,MA J.Physical Properties of Composites Near Percolation[J].Annual Review of Materials Research,2010,40(1):131—151.
    [17]NING N,YAN B,LIU S,et al.Improved Actuated Strain of Dielectric Elastomer through Disruption of Hydrogen Bonds of Thermoplastic Polyurethane by Adding Diaminonaphthalene[J].Smart Materials&Structures,2015,24(3):1—8.
    [18]DANG Z M,YUAN J K,YUAN J W,et al.Fundamentals,Processes and Applications of High-permittivity Polymer–matrix Composites[J].Progress in Materials Science,2012,57(4):660—723.
    [19]JANG H,YOON H K,KO Y,et al.Enhanced Performance in Capacitive Force Sensors Using Carbon Nanotube/Polydimethylsiloxane Nanocomposites with High Dielectric Properties[J].Nanoscale,2016,8(10):5667—5675.
    [20]AMJADI M,KYUNG K,PARK I,et al.Stretchable,Skin-mountable,and Wearable Strain Sensors and Their Potential Applications:A Review[J].Advanced Functional Materials,2016,26(11):1678—1698.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700