氮掺杂石墨烯/多酚氧化酶修饰电极检测苯酚
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Nitrogen-doped graphene/polyphenol oxidase modified electrodefor the determination of phenol
  • 作者:李晓霞 ; 朴金花 ; 梁振兴
  • 英文作者:LI Xiao-xia;PIAO Jin-hua;LIANG Zhen-xing;College of Food Science and Engineering,South China University of Technology;School of Chemistry and Chemical Engineering,South China University of Technology;
  • 关键词:酶修饰电极 ; 多酚氧化酶 ; 氮掺杂石墨烯 ; 苯酚
  • 英文关键词:enzyme modified electrode;;polyphenol oxidase;;nitrogen-doped graphene;;phenol
  • 中文刊名:HXYJ
  • 英文刊名:Chemical Research and Application
  • 机构:华南理工大学食品科学与工程学院;华南理工大学化学与化工学院;
  • 出版日期:2019-07-15
  • 出版单位:化学研究与应用
  • 年:2019
  • 期:v.31
  • 基金:国家自然科学基金项目(21576101,21676106,21476087)资助;; 广东省自然科学基金项目(2017A030313045)资助;; 国家重点研发项目(2016YFB0101200(2016YFB0101204))资助;; 广州市科技计划项目(201704030065)资助
  • 语种:中文;
  • 页:HXYJ201907012
  • 页数:7
  • CN:07
  • ISSN:51-1378/O6
  • 分类号:84-90
摘要
制备了基于氮掺杂石墨烯的多酚氧化酶修饰电极,并将其应用于苯酚的检测。首先利用改进的Hummers方法制备氧化石墨,然后以聚苯胺为氮源,采用水热还原法制备了氮掺杂石墨烯材料,采用扫描电子显微镜、原子力显微镜对制备得到的氮掺杂石墨烯进行微观结构表征。将制备得到的氮掺杂石墨烯与多酚氧化酶复合,利用戊二醛交联的方法制备酶修饰电极,采用循环伏安法、差示脉冲伏安法等电化学方法研究了该酶修饰电极的电化学性能及最优运行条件,结果表明在pH值为6.5时酶修饰电极性能最优;该酶修饰电极对苯酚的检出限为1.21×10~(-6)mol·L~(-1)(S/N=3),线性检测范围为2×10~(-5)~7.7×10~(-4)mol·L~(-1)。同时,该酶修饰电极具有很好的抗干扰性能,可用于水中苯酚含量的检测。
        Nitrogen-doped graphene/polyphenol oxidase modified electrode was prepared for the detection of phenol.Firstly,the graphite oxide was prepared by the modified Hummers method.Then,the nitrogen-doped graphene material was prepared by hydrothermal reduction method using polyaniline as nitrogen source.The microstructure of the as-preparedmaterial werecharacterized by scanning electron microscopy and atomic force microscopy.The prepared nitrogen-doped graphene wascomposited with polyphenol oxidase,then prepared enzyme modified electrode using glutaraldehyde crosslinking method.The electrochemical performance of the enzyme modified electrode and the optimal operating conditions were studied by electrochemical methods such as cyclic voltammetry and differential pulse voltammetry.The results show that the optimized pH was 6.5,the detection limit of the prepared enzyme modified electrode was 1.21×10~(-6 )mol·L~(-1)(S/N=3),the detection range was 2×10~(-5)~7.7×10~(-4) mol·L~(-1).At the same time,the prepared enzyme modified electrode showed superior anti-interference performance.Therefore,it can be used to detect phenol content in water.
引文
[1]Giancane G,Basova T,Hassan A,et al.Investigations and application in piezoelectric phenol sensor of Langmuir-Schafer films of a copper phthalocyanine derivative functionalized with bulky substituents[J].J Colloid Interface Sci,2012,377(1):176-183.
    [2]Zhou Y,Tang L,Zeng G,et al.Mesoporous carbon nitride based biosensor for highly sensitive and selective analysis of phenol and catechol in compost bioremediation[J].Biosens Bioelectron,2014,61:519-525.
    [3]Freire R S,Durán N,Kubota L T.Electrochemical biosensor-based devices for continuous phenols monitoring in environmental matrices[J].J Braz Chem Soc,2002,13:456-462.
    [4]Filik H,Hayval?M,K?l??E,et al.Development of an optical fibre reflectance sensor for p-aminophenol detection based on immobilised bis-8-hydroxyquinoline[J].Talanta,2008,77(1):103-109.
    [5]Frenzel W,Krekler S.Spectrophotometric determination of total phenolics by solvent extraction and sorbent extraction optosensing using flow injection methodology[J].Anal Chim Acta,1995,310(3):437-446.
    [6]Brega A,Prandini P,Amaglio C,et al.Determination of phenol,m-,o-and p-cresol,p-aminophenol and p-nitrophenol in urine by high-performance liquid chromatography[J].J Chromatogr A,1990,535:311-136.
    [7]Gamache P,Ryan E,Acworth I N.Analysis of phenolic and flavonoid compounds in juice beverages using high-performance liquid chromatography with coulometric array detection[J].J Chromatogr A,1993,635(1):143-150.
    [8]Kaffash A,Zare H R,Rostami K.Highly sensitive biosensing of phenol based on the adsorption of the phenol enzymatic oxidation product on the surface of an electrochemically reduced graphene oxide-modified electrode[J].Anal Methods-UK,2018,10(23):2731-2739.
    [9]Wang Y,Zhai F,Hasebe Y,et al.A highly sensitive electrochemical biosensor for phenol derivatives using a graphene oxide-modified tyrosinase electrode[J].Bioelectrochemistry,2018,122:174-182.
    [10]Wu L,Lu X,Dhanjai,et al.2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol[J].Biosens Bioelectron,2018,107:69-75.
    [11]Seo S-Y,Sharma V K,Sharma N.Mushroom tyrosinase:Recent prospects[J].J Agric Food Chem,2003,51(10):2837-2853.
    [12]Ren B,Li W,Wei A,et al.Boron and nitrogen co-doped CNT/Li 4 Ti 5 O 12 composite for the improved high-rate electrochemical performance of lithium-ion batteries[J].J Alloys Compd,2018,740:784-789.
    [13]Shan H,Li X,Cui Y,et al.Sulfur/nitrogen dual-doped porous graphene aerogels enhancing anode performance of lithium ion batteries[J].Electrochim Acta,2016,205:188-197.
    [14]Sun L,Li S,Ding W,et al.Fluorescence detection of cholesterol using a nitrogen-doped graphene quantum dot/chromium picolinate complex-based sensor[J].J Mater Chem B,2017,5(45):9006-9014.
    [15]Stankovich S,Dikin D A,Piner R D,et al.Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J].Carbon,2007,45(7):1558-1565.
    [16]Bissessur R,Liu P K Y,Scully S F.Intercalation of polypyrrole into graphite oxide[J].Synth Met,2006,156(16):1023-1027.
    [17]Shaabani A,Hezarkhani Z,Nejad M K.Cr-and Zn-substituted cobalt ferrite nanoparticles supported on guanidine–modified graphene oxide as efficient and recyclable catalysts[J].J Mater Sci,2017,52(1):96-112.
    [18]Cao S,Zhang L,Chai Y,et al.Electrochemistry of cholesterol biosensor based on a novel Pt-Pd bimetallic nanoparticle decorated graphene catalyst[J].Talanta,2013,109:167-172.
    [19]Pineda S,Borghi FF,Seo DH,et al.Multifunctional graphene micro-islands:Rapid,low-temperature plasma-enabled synthesis and facile integration for bioengineering and genosensing applications[J].Biosens Bioelectron,2017,89:437-443.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700