缺陷类型对FGH95粉末高温合金界面开裂行为影响的模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation of influence of defect types on interface cracking behavior of FGH95 P/M superalloy
  • 作者:刘新灵 ; 陶春虎 ; 王天宇
  • 英文作者:LIU Xin-ling;TAO Chun-hu;WANG Tian-yu;AECC Beijing Institute of Aeronautical Materials;Aviation Key Laboratory of Science and Technology on Materials Testing and Evaluation;Beijing Key Laboratory of Aeronautical Materials Testing and Evaluation;
  • 关键词:FGH95粉末高温合金 ; 缺陷类别 ; 弹性模量 ; 界面开裂行为 ; 应力分布
  • 英文关键词:FGH95 P/M superalloy;;different type of inclusions;;elasticity modulus;;interfacial cracking behavior;;stress distribution
  • 中文刊名:JSCL
  • 英文刊名:Transactions of Materials and Heat Treatment
  • 机构:中国航发北京航空材料研究院;材料检测与评价航空科技重点实验室;航空材料检测与评价北京市重点实验室;
  • 出版日期:2019-04-25
  • 出版单位:材料热处理学报
  • 年:2019
  • 期:v.40;No.226
  • 基金:国家高技术研究发展计划(“863”计划)项目(2015AA 034401)
  • 语种:中文;
  • 页:JSCL201904020
  • 页数:7
  • CN:04
  • ISSN:11-4545/TG
  • 分类号:142-148
摘要
为了研究缺陷类型对粉末高温合金缺陷处应力应变分布的影响,通过弹性模量表征,将缺陷分为硬夹杂(弹性模量大于基体)、软夹杂(弹性模量小于基体)、孔洞(弹性模量为0)。用有限元模型模拟了弹塑性条件下不同类型缺陷对缺陷/基体界面应力应变分布的影响。结果表明,缺陷类型对界面附近应力应变分布影响明显。在该研究的基础上,分析了不同类型缺陷的致裂机制,即:当界面粘接强度较低时,界面应力是评价界面附近破坏的主要参量,当界面粘接强度较高时,基体最大主应力和基体最大塑性应变是评价界面附近破坏的主要参量。分析了当界面结合强度较强、较弱(相对于基体)两种情况下,硬夹杂和软夹杂的界面裂纹在外加载荷作用下的演变过程。从断口上观察分析了源区含不同类别夹杂开裂形貌,其开裂行为与模拟结果一致,验证了模拟的有效性。
        In order to study the effect of defect types on the distribution of stress and strain in powder superalloy defect sites, the defects were deemed as hard inclusions(elastic modulus greater than matrix), soft inclusions(elastic modulus less than matrix) and hole(elastic modulus of 0). The effects of different types of defects on the stress-strain distribution at the interface between the defects and the matrix were simulated by using the finite element model. The results show that the type of defects has an obvious effect on the distribution of stress and strain near the interface. On the basis of this study, the fracture mechanism of different types of defects is analyzed, and it is found that when the bonding strength of the interface is low, the interface stress is the main parameter to evaluate the failure near the interface, and when the bonding strength of the interface is high, the maximum main stress of matrix and the maximum plastic strain of matrix are the main parameters to evaluate the failure near the interface. The evolution process of interfacial cracks of hard inclusions and soft inclusions under the external loads is analyzed when the interface bonding strength is strong and weak(relative to the matrix). The fracture morphology of the source region with different type of inclusions was observed and analyzed. It shows that the cracking behavior is consistent with the simulation results, which verifies the effectiveness of the simulation.
引文
[1] 李家栄,熊继春,唐定中.先进高温结构材料与技术(下)[M].北京:国防工业出版社,2012.
    [2] 邹金文,汪武祥.粉末高温合金中夹杂物特性及其质量控制[J].粉末冶金技术,2001,19(1):7-11.ZOU Jin-wen,WANG Wu-xiang.Characteristic and quality control of inclusions in P/M superalloy[J].Powder Metallurgy Technology,2001,19(1):7-11.
    [3] 国为民,冯涤,吴剑涛,等.镍基粉末高温合金冶金工艺的研究与发展[J].材料工程,2002(3):38-42.GUO Wei-min,FENG Di,WU Jian-tao,et al.Research and development of P/M superalloy metallurgic techniques[J].Journal of Materials Engineering,2002(3):38-42.
    [4] 国为民,吴剑涛,张凤戈,等.FGH95镍基高温合金粉末中的夹杂及其对合金疲劳性能的影响[J].粉末冶金工业,2000,10(3):23-28.GUO Wei-min,WU Jian-tao,ZHANG Feng-ge,et al.Inclusion in powder of nickle base superalloy FGH95 and the effect on LCF of the superalloy[J].Power Metallurgy Industry,2000,10(3):23-28.
    [5] 何承群,余泉茂,胡本芙.FGH95合金LCF断裂寿命与夹杂特征关系的研究[J].金属学报,2001,37(3):247-252.HE Cheng-qun,YU Quan-mao,FU Ben-fu.Study of the relationship between the LCF life of FGH95 alloy and the inclusion characteristics[J].Acta Metallurgica Sinica,2001,37(3):247-252.
    [6] 刘新灵,胡春燕,王天宇.夹杂物尺寸对粉末高温合金低周疲劳寿命影响的机制[J].失效分析与预防,2018,13 (2):89-94.LIU Xin-ling,HU Chun-yan,WANG Tian-yu.Influence mechanism of inclusion size on low cycle fatigue of powder metallurgy superalloy[J].Failure Analysis and Prevention,2018,13(2):89-94.
    [7] Floreen S,Davidson J M.The effects of band Zr on the creep and fatigue crack growth behavior of a Ni-base superalloy[J].Metallurgical Transactions A,1983,14(4):895-901.
    [8] Gruson J,Remy L.Fatigue failure probability in a powder metallurgy Ni-base superalloy[J].Engineering Fracture Mechanics,1997,57(1):41-55.
    [9] 宋迎东,高德平.基于夹杂物分布的粉末冶金盘疲劳定寿的概率方法[J].航空发动机,1998(2):49-52.Song Ying-dong,GAO De-ping.Probabilistic method for fatigue life of powder metallurgy disc based on inclusion distribution[J].Journal of Aerospace Power,1998(2):49-52.
    [10] 魏大盛.基于缺陷概率特点的粉末冶金材料寿命预测概率模型[J].航空动力学报,2005,20(6):951-957.WEI Da-sheng.A probabilistic model for prediction of life based on probabilistic character of defects in PM alloys[J].Journal of Aerospace Power,2005(6):951-957.
    [11] Bretheau T,Caldemaison,Ambroise M H.Inclusion/matrix mechanical interaction an in situ study by tensile and fatigue tests in the scanning electron microscope[C]//Strength of Metals and Alloys.Finland,1989,1051-1056.
    [12] 谢锡善,张丽娜,张麦仓.镍基粉末高温合金中夹杂物的微观力学行为研究[J].金属学报,2002,38(6):635-642.XIE Xi-shan,ZHANG Li-na,ZHANG Mai-cang.Micro-mechanical behavior study of non-metallic inclusions in nickel-base P/M superalloy[J].Acta Metallurgica Sinica,2002,38(6):635-642.
    [13] 周晓明.粉末高温合金中非金属夹杂物的遗传特征及损伤力学行为研究[D].北京:北京航空材料研究院,2006:71-81.ZHOU Xiao-ming.Genetic characteristic and damage mechanical behavior of non-metallic inclusions in P/M superalloy[D].Beijing:Beijing Institute of Aeronautical Materials,2006:71-81.
    [14] 许捷,徐元铭,刘新灵,等.夹杂物对粉末高温合金材料裂纹萌生的影响[J].西北工业大学学报,2017,35(S1):108-112XU Jie,XU Yuan-ming,LIU Xin-ling,et al.Inclusion effect on crack initiation of powder metallurgy superalloy[J].Journal of Northwestern Polytechnical University,2017,35(S1):108-112
    [15] 王天宇.粉末高温合金缺陷定量评价及萌生寿命预测方法研究[D].北京:北京航空材料研究院,2016:23-31.WANG Tian-yu.Quantitative evaluation of defects in powder superalloy and method for prediction of its initiation life[D].Beijing:Beijing Institute of Aeronautical Materials,2016:23-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700