石墨烯基复合催化剂的光催化杀菌效应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Disinfection effects induced by graphene-based photocatalytic composites under solar light illumination
  • 作者:张万众 ; 姚登科 ; 程沈航 ; 于彩虹 ; 孙志明 ; 郑水林
  • 英文作者:Zhang Wanzhong;Yao Dengke;Cheng Shenhang;Yu Caihong;Sun Zhiming;Zheng Shuilin;School of Chemical and Environmental Engineering,China University of Mining and Technology;
  • 关键词:氧化锌 ; 石墨烯 ; 红辉沸石 ; 金黄色葡萄球菌 ; 抗菌速率
  • 英文关键词:ZnO;;graphene;;stellerite;;S.aureus;;disinfection rate
  • 中文刊名:KYKX
  • 英文刊名:Journal of Mining Science and Technology
  • 机构:中国矿业大学(北京)化学与环境工程学院;
  • 出版日期:2019-01-08 17:36
  • 出版单位:矿业科学学报
  • 年:2019
  • 期:v.4;No.17
  • 基金:国家自然科学基金(31471803);; 中央高校基本科研业务费专项资金(2009QH11)
  • 语种:中文;
  • 页:KYKX201902009
  • 页数:8
  • CN:02
  • ISSN:10-1417/TD
  • 分类号:72-79
摘要
以醋酸锌、尿素、天然沸石和石墨烯为原料,采用水热-煅烧法分别制备了氧化锌/红辉沸石(ZnO/stellerite)和氧化锌/石墨烯(ZnO/graphene)两种复合光催化剂。运用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、N_2吸附仪(BET)和紫外-可见光谱仪(UV-Vis DRS)对催化剂的组成、形貌、比表面积、孔径分布和光吸收性能进行了分析。结果表明:制备的复合光催化剂ZnO/stellerite和ZnO/graphene均具有良好的六方纤锌形貌;ZnO粒径分别为22.42 nm和15.72 nm;S_(BET)分别为16.54 m~2/g和35.55 m~2/g;graphene与ZnO之间构筑的三维结构,使光响应扩展到可见光区域,抑制了自由电子的复合,促进了界面电荷迁移。日光灯照射下灭活金黄色葡萄球菌(S.aureus)的试验结果表明,复合催化剂ZnO/graphene的最优杀菌浓度为100 mg/L,其杀菌效率与ZnO/stellerite相比明显提高,杀菌速率常数k为ZnO/stellerite的1.31倍,达到1.17 h~(-1)。
        ZnO/graphene and ZnO/stellerite composite photocatalysts were prepared through a facile hydrothermal-calcination processing with zinc acetate,urea,natural stellerite and graphene.The composition,morphology,specific surface area,pore size distribution and light absorption properties of prepared composites were characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD),nitrogen adsorption/desorption and UV-visible diffused reflectance spectroscopy(UV-vis DRS).It was found that the prepared photocatalysts ZnO/stellerite and ZnO/graphene had wurtzite ZnO phase morphology with ZnO paticle sizes of 22.42 nm and 15.72 nm.S_(BET) of composites were 16.54 m~2/g and 35.55 m~2/g respectively.3 D structure between ZnO and graphene resulted in the response to visible light region,reduced recombination of free charges,and enhanced interface charge transfer.The disinfection action towards Staphylococcus aureus(S.aureus) under solar light showed that the optimal amount of ZnO/graphene was 100 mg/L.ZnO/graphene exhibited significantly enhanced photocatalytic disinfection efficiency than ZnO/stellerite powders,and disinfection rate up to 1.17 h~(-1 )is 1.31 times that of ZnO/stellerite composite.
引文
[1] 江传春,肖蓉蓉,杨平.高级氧化技术在水处理中的研究进展[J]. 水处理技术,2011,37(7):12-16. Jiang Chuanchun,Xiao Rongrong,Yang Ping.Research process of advanced oxidation processes in wastewater treatment[J]. Technology of Water Treatment,2011,37(7):12-16.
    [2] Cui Y,Li H,Hong W,et al. The effect of carbon content on the structure and photocatalytic activity of nano-Bi2WO6 powder[J]. Powder Technology,2013,247:151-160.
    [3] Huang J,Ho W K,Wang X.Metal-free disinfection effects induced by graphitic carbon nitride polymers under visible light illumination [J]. Chemical Communications,2014,50(33):4338-4340.
    [4] Yu H,Quan X,Zhang Y,et al. Electrochemically assisted photocatalytic inactivation of escherichia coli under visible light using a ZnIn2S4 film electrode[J]. Langmuir the Acs Journal of Surfaces & Colloids,2008,24(14):7599-7604.
    [5] Seven O,Dindar B,Aydemir S,et al. Solar photocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with TiO2,ZnO and Sahara desert dust[J]. Journal of Photochemistry & Photobiology A Chemistry,2004,165(1/3):103-107.
    [6] Wang W,Ng T W,Ho W K,et al. CdIn2S4 microsphere as an efficient visible-light-driven photocatalyst for bacterial inactivation:synthesis,characterizations and photocatalytic inactivation mechanisms[J]. Applied Catalysis B Environmental,2013,129(3):482-490.
    [7] Demirci S,Ustaog ˇlu Z,Yilmazer G A,et al. Antimicrobial properties of zeolite-X and zeolite-A ion-exchanged with silver,copper,and zinc against a broad range of microorganisms[J]. Applied Biochemistry & Biotechnology,2014,172(3):1652-1662.
    [8] 王咚,黄颖为.还原氧化石墨烯/纤维素复合薄膜的制备及性能[J]. 化工进展,2017,36(5):1838-1842. Wang Dong,Huang Yingwei.Preparation and properties of reduced graphene oxide/cellulose films[J].Chemical Industry and Engineering Progress,2017,36(5):1838-1842.
    [9] 邹得球,马先锋,刘小诗,等.石墨烯在相变材料中的研究进展[J]. 化工进展,2017,36(5):1743-1754. Zou Deqiu,Ma Xianfeng,Liu Xiaoshi,et al. Research progress on graphene in phase change materials[J]. Chemical Industry and Engineering Progress,2017,36(5):1743-1754.
    [10] 胡光武,李曦,张超灿.石墨烯基复合电极在非对称超级电容器中的研究进展[J]. 化工进展,2017,36(8):2978-2985. Hu Guangwu,Li Xi,Zhang Chaocan.Research progress of graphene-based composite electrodes in asymmetric supercapacitors[J]. Chemical Industry and Engineering Progress,2017,36(8):2978-2985.
    [11] 王学文,周力,李峰.还原氧化石墨烯负载极性面占优氧化锌对亚甲基蓝的光催化降解[J]. 新型炭材料,2013,28(6):408-413. Wang Xuewen,Zhou Li,Li Feng.ZnO disks loaded with reduced graphene oxide for the photodegradation of methylene blue[J]. New Carbon Materials,2013,28(6):408-413.
    [12] Wei B,Zhao W,Sun H,et al. Visible-light-driven enhanced antibacterial and biofilm elimination activity of graphitic carbon nitride by embedded Ag nanoparticles[J]. Nano Research,2015,8(5):1648-1658.
    [13] Sundrarajan M,Ambika S,Bharathi K.Plant-extract mediated synthesis of ZnO nanoparticles using pongamia pinnata and their activity against pathogenic bacteria[J]. Advanced Powder Technology,2015,26(5):1294-1299.
    [14] Dagar A,Narula A K.Effect of ternary PEDOT/ZnO/Flyash-cenosphere photocatalyst on photo-degradation of methyl orange under visible light[J]. Journal of Materials Science:Materials in Electronics,2016,27:12777-12785.
    [15] Chen G,Wang Y,Dai G,et al. Immobilization of flower-like ZnO on activated carbon fibre as recycled photocatalysts[J]. Research on Chemical Intermediates,2016,42(12):8227-8237.
    [16] Matos J,Montaňa R,Rivero E.Influence of activated carbon upon the photocatalytic degradation of methylene blue under UV-Vis irradiation[J]. Environmental Science & Pollution Research International,2015,22(2):784-791.
    [17] Brunauer S,Deming L S,Deming W E,et al. On a theory of the van der Waals adsorption of gases[J]. Journal of the American Chemical Society,1940,62(7):1723-1732.
    [18] Huang Y,Ho W,Lee S,et al. Aerosol-assisted flow synthesis of B-doped,Ni-doped and B-Ni-codoped TiO2 solid and hollow microspheres for photocatalytic removal of NO[J]. Applied Catalysis B Environmental,2009,89(3):398-405.
    [19] Sun Z,Yang Y,Zhang G,et al. The influence of carriers on the structure and photocatalytic activity of TiO2/diatomite composite photocatalysts[J]. Advanced Powder Technology,2015,26(2):595-601.
    [20] Cheng X W,Meng Q Y,Chen J Y,et al. A facile route to synthesize mesoporous ZSM-5 zeolite incorporating high ZnO loading in mesopores[J]. Microporous & Mesoporous Materials,2012,153(6):198-203.
    [21] Fereshteh Z,Loghman-Estarki M R,Razavi R S,et al. Template synthesis of zinc oxide nanoparticles entrapped in the zeolite Y matrix and applying them for thermal control paint[J]. Materials Science in Semiconductor Processing,2013,16(2):547-553.
    [22] 杨晓喻,王超,洪德雄,等.核壳结构氧化锌/石墨烯的光催化性能及机理研究[J]. 中国科学技术大学学报,2014,44(8):661-666. Yang Xiaoyu,Wang Chao,Hong Dexiong,et al. Photocatalytic activity of ZnO/graphene core-shell structure and its mechanism study[J]. Journal of University of Science and Technology of China,2014,44(8):661-666.
    [23] Azimi Y,Thompson I P.Phosphorus depletion as a green alternative to biocides for controlling biodegradation of metalworking fluids[J]. Environmental Science & Technology,2017,51(10):5695-5702.
    [24] 孙诗萌,刘建军,左胜利,等.新型(NH4)2Er5F17/TiO2复合可见光催化剂的制备及光催化活性研究[J]. 北京化工大学学报:自然科学版,2016,43(2):41-47. Sun Shimeng,Liu Jianjun,Zuo Shengli,et al. Preparation and photocatalvtic activity of a novel (NH4)2Er5F17/TiO2 composite visible light photocatalyst [J]. Journal of Beijing University of Chemical Technology:Natural Science,2016,43(2):41-47.
    [25] 秦海涛,吉美武,岳林林,等.片状 g-C3N4可见光响应催化剂的热聚合法制备及光催化活性[J]. 广州化工,2015,43(8):80-81. Qin Haitao,Ji Meiwu,Yue Linlin,et al. Synthesis of flake-like visible-light-responsive g-C3N4 photocatalyst via a thermal-polymeration process and its photocatalytic activity [J]. Guangzhou Chemical Industry,2015,43(8):80-81.
    [26] 赵萍,汪淑廉,张欣欣,等.热解法制备g-C3N4及其可见光降解有机污染物[J]. 三峡大学学报:自然科学版,2015,37(6):104-109.Zhao Ping,Wang Shulian,Zhang Xinxin,et al. Pyrolysis synthesized g-C3N4 for photocatalytic degradation of organic pollutants under visible light irradiation[J]. Journal of China Three Gorges University:Natural Sciences,2015,37(6):104-109.
    [27] Sawai J,Shiga H,Kojima H.Kinetic analysis of the bactericidal action of heated scallop-shell powder[J]. International Journal of Food Microbiology,2001,71(2/3):211-218.
    [28] Liu C,Kong D,Hsu P C,et al. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light[J]. Nature Nanotechnology,2016,11(12):1098-1104.
    [29] Herrmann J M.Heterogeneous photocatalysis:fundamentals and applications to the removal of various types of aqueous pollutants[J]. Catalysis Today,1999,53(1):115-129.
    [30] Carré G,Hamon E,Ennahar S,et al. TiO2 photocatalysis damages lipids and proteins in Escherichia coli[J]. Applied & Environmental Microbiology,2014,80(8):2573-2581.
    [31] Suanon F,Sun Q,Li M,et al. Application of nanoscale zero valent iron and iron powder during sludge anaerobic digestion:Impact on methane yield and pharmaceutical and personal care products degradation[J]. Journal of Hazardous Materials,2017,321:47-53.
    [32] Wang W,Yu J C,Xia D,et al. Graphene and g-C3N4 nanosheets cowrapped elemental α-Sulfur as a novel metal-free heterojunction photocatalyst for bacterial inactivation under visible-light[J]. Environmental Science & Technology,2013,47(15):8724-8732.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700