生物质固体废物厌氧发酵过程中HS对产CH_4作用研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanism of methane production pathway influenced by humus during the anaerobic digestion
  • 作者:杨天学 ; 李英军 ; 赵颖 ; 张列宇 ; 黄彩红 ; 李东阳 ; 余红 ; 李琦 ; 席北斗
  • 英文作者:YANG Tian-xue;LI Ying-jun;ZHAO Ying;ZHANG Lie-yu;HUANG Cai-hong;LI Dong-yang;YU Hong;LI Qi;XI Bei-dou;Chinese Research Academy of Environmental Sciences;Beijing Vocational Agriculture;
  • 关键词:腐殖质 ; 生物质 ; 厌氧发酵 ; CH_4 ; 抑制作用
  • 英文关键词:humus;;biomass waste;;anaerobic digestion;;methane;;inhibition
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:中国环境科学研究院;北京农业职业学院;
  • 出版日期:2018-11-20
  • 出版单位:中国环境科学
  • 年:2018
  • 期:v.38
  • 基金:公益性行业科研专项(201509040);; 国家自然科学基金项目(51608499)
  • 语种:中文;
  • 页:ZGHJ201811029
  • 页数:7
  • CN:11
  • ISSN:11-2201/X
  • 分类号:182-188
摘要
针对生物质固体废物量大面广,具有污染和资源利用双重特性,厌氧发酵能源化可促进其污染控制,且过程中部分有机成分在微生物作用下转化成腐殖质(HS).通过分析厌氧发酵过程中HS转化规律、HS结构特征与氧化还原性能、腐殖质还原菌与产甲烷菌活性、产CH_4效率之间的响应关系和作用机制研究进展,总结凝练出生物质厌氧发酵系统内HS对CH_4的调控原理,为减少厌氧发酵系统内HS对产CH_4途径的抑制作用,提高发酵效率的技术研究提供理论支撑.
        Biomass solid waste quantity was large and widely available,with dual characters of pollution and resource.Anaerobic fermentation could promote its pollution control and some part of components involved were converted into humus(HS) under the action of microorganisms.By analyzing the relationship between HS conversion,HS structural characteristics and redox performance,humic reducing bacteria and methanogen activity,and CH_4 production efficiency in anaerobic fermentation,the regulation principle of HS to CH_4 in biomass dry anaerobic fermentation system was illustrated,which provided theoretical support for reducing the inhibition of HS on the CH_4 production pathway and improving fermentation efficiency in anaerobic fermentation system.
引文
[1]曹志宏,黄艳丽,郝晋珉.中国作物秸秆资源利用潜力的多适宜性综合评价[J].环境科学研究,2018,31(1):179-186.
    [2]Azeem K,Muhammad A,Muzammil A,et al.The anaerobic digestion of solid organic waste[J].Waste Management,2011,31:1737-1744.
    [3]Yang T X,Li Y J,Gao J X,et al.Performance of dry anaerobic technology in the co-digestion of rural organic solid wastes in China[J].Energy,2015,93:2497-2502.
    [4]Jingura R M,Matengaifa R.Optimization of biogas production by anaerobic digestion for sustainable energy development in Zimbabwe[J].Renewable&Sustainable Energy Reviews,2009,13(5):1116-1120.
    [5]Chanakya H N,Ramachandra T,Guruprasad V,et al.Micro-treatment options for components of organic fraction of MSW in residential areas[J].Environmental Montoring and Assessment,2007,135(1-3):129-139.
    [6]Mayumi H,Katsumi S,Motoyuki M.Reduction process of Cr(VI)by Fe(II)and humic acid analyzed using high time resolution XAFSanalysis[J].Journal of Hazardous Materials,2015,285:140-147.
    [7]李怀.ASBR处理水热改性污泥的微生物学特性研究[D].西安:长安大学,2008.
    [8]杨天学.玉米秸秆干式厌氧发酵转化机理及微生物演替规律研究[D].武汉:武汉大学,2014.
    [9]祝其丽,潘科,汤晓玉,等.牛粪批次干发酵过程中腐植酸的变化趋势初探[J].中国沼气,2014,32(5):7-11+16.
    [10]宋海燕,尹友谊,宋建中.不同来源腐殖酸的化学组成与结构研究[J].华南师范大学学报:自然科学版,2009,(1):61-66.
    [11]Gu B,Chen J.Enhanced microbial reduction of Cr(VI)and U(VI)by different natural organic matter fractions[J].Geochimica Et Cosmochimica Acta,2003,67(19):3575-3582.
    [12]彭国栋.腐殖酸对土壤汞形态分配及生物有效性的调控作用及机理研究[D].重庆:西南大学,2012.
    [13]Bolton K A,Sj?berg S,Evans L J.Proton Binding and Cadmium Complexation Constants for a Soil Humic Acid Using a Quasi-particle Model[J].Soil Science Society of America Journal,1996,60(4):1064-1072.
    [14]蔡茜茜,袁勇,胡佩,等.腐殖质电化学特性及其介导的胞外电子传递研究进展[J].应用与环境生物学报,2015,21(6):996-1002.
    [15]金鹏康.腐殖酸混凝的化学成因、形态学特征及动力学研究[D].西安:西安建筑科技大学,2003.
    [16]Cervantes F J,Claudia M.Martínez,Gonzalezestrella J,et al.Kinetics during the redox biotransformation of pollutants mediated by immobilized and soluble humic acids[J].Applied Microbiology&Biotechnology,2013,97(6):2671-2679.
    [17]Yuan Y,Xi B,He X,et al.Compost-derived humic acids as regulators for reductive degradation of nitrobenzene[J].Journal of Hazardous Materials,2017,339:378-384.
    [18]Hernández-Montoya V,Alvarez L H,Montes-Morán M A,et al.Reduction of quinone and non-quinone redox functional groups in different humic acid samples by Geobacter sulfurreducens[J].Geoderma,2012,183-184:25-31.
    [19]Kim K M,Lee Y,Park J H,et al.Supercapacitive Properties of Composite Electrode Consisting of Activated Carbon and Di(1-aminopyrene)quinone[J].Etri Journal,2016,38(2):252-259
    [20]Jiang T,Skyllberg U,Wei S,et al.Modeling of the structure-specific kinetics of abiotic,dark reduction of Hg(II)complexed by O/N and Sfunctional groups in humic acids while accounting for time-dependent structural rearrangement[J].Geochimica Et Cosmochimica Acta,2015,154:151-167.
    [21]Wang F,Shih K,Leckie J O.Effect of humic acid on the sorption of perfluorooctane sulfonate(PFOS)and perfluorobutane sulfonate(PFBS)on boehmite[J].Chemosphere,2015,118:213-218.
    [22]Liu K,Chen Y,Xiao N,et al.Effect of humic acids with different characteristics on fermentative short-chain fatty acids production from waste activated sludge[J].Environmental Science&Technology,2015,49(8):4929.
    [23]Claudio C,Giuseppe P,Vincenzo M S,et al.Stability of coprecipitated natural humic acid and ferrous iron under oxidative conditions[J].Geochemical Exploration,2015,151(4):50-56.
    [24]Ortega-Gómez E,Martín M M B,CarratalàA,et al.Principal parameters affecting virus inactivation by the solar photo-Fenton process at neutral pH andμM concentrations of H2O2and Fe2+/3+[J].Applied Catalysis B:Environmental,2015,174:395-402.
    [25]Romo-Rodríguez P,Acevedo-Aguilar F J,Lopez-Torres A,et al.Cr(VI)reduction by gluconolactone and hydrogen peroxide,the reaction products of fungal glucose oxidase:Cooperative interaction with organic acids in the biotransformation of Cr(VI)[J].Chemosphere,2015,134:563-570.
    [26]Castro L,Garcia-Balboa C,Felisa G,et al.Effectiveness of anaerobic iron bio-reduction of jarosite and the;influence of humic substances[J].Hydrometallurgy,2013,131(1):29-33.
    [27]Sundman A,Byrne J M,Bauer I,et al.Interactions between magnetite and humic substances:redox reactions and dissolution processes[J].Geochemical Transactions,2017,18(1):6.
    [28]Zhen G,Lu X,Wang B,et al.Synergetic pretreatment of waste activated sludge by Fe(II)-activated persulfate oxidation under mild temperature for enhanced dewaterability[J].Bioresource Technology,2012,124(9):29-36.
    [29]Schmeide K,Sachs S,Bernhard G.Np(V)reduction by humic acid:contribution of reduced sulfur functionalities to the redox behavior of humic acid[J].Science of the Total Environment,2012,419(3):116-123.
    [30]Roden E E,Kappler A,Bauer I,et al.Extracellular electron transfer through microbial reduction of solid-phase humic substances[J].Nature Geoscience,2010,3(6):417-421.
    [31]党岩.垃圾焚烧厂渗沥液中富里酸对厌氧生物处理的影响及其降解和转化研究[D].北京:北京林业大学,2016.
    [32]杨浈.腐殖酸大小分子氧化还原能力及其氧化还原官能团的分布研究[D].北京:北京林业大学,2016.
    [33]Miller K E,Lai C T,Friedman E S,et al.Methane suppression by iron and humic acids in soils of the Arctic Coastal Plain[J].Soil Biology&Biochemistry,2015,83:176-183.
    [34]Kulikowska D.Kinetic of organic matter degradation and humification progress during sewage sludge composting in two-stage system[J].Journal of Biotechnology,2010,150(1):283.
    [35]Yap S D,Astals S,Lu Y,et al.Humic acid inhibition of hydrolysis and methanogenesis with different anaerobic inocula[J].Waste Management,2018,80:130-136.
    [36]Blodau C,Deppe M.Humic acid addition lowers methane release in peats of the Mer Bleue bog,Canada[J].Soil Biology&Biochemistry,2012,52(3):96-98.
    [37]Minderlein S,Blodau C.Humic-rich peat extracts inhibit sulfate reduction,methanogenesis,and anaerobic respiration but not acetogenesis in peat soils of a temperate bog[J].Soil Biology&Biochemistry,2010,42(12):2078-2086.
    [38]Keller J K,Weisenhorn P B,Megonigal J P.Humic acids as electron acceptors in wetland decomposition[J].Soil Biology&Biochemistry,2009,41(7):1518-1522.
    [39]Tan W,Jia Y,Huang C,et al.Increased suppression of methane production by humic substances in response to warming in anoxic environments[J].Journal of Environmental Management,2018,206:602-606.
    [40]Ho L,Ho G.Mitigating ammonia inhibition of thermophilic anaerobic treatment of digested piggery wastewater:use of pH reduction,zeolite,biomass and humic acid[J].Water Research,2012,46(14):4339-4350.
    [41]任冰倩.腐殖酸抑制厌氧消化过程实验研究[D].北京:北京建筑大学,2015.
    [42]Bastida F,Jindo K,Moreno J L,et al.Effects of organic amendments on soil carbon fractions,enzyme activity and humus-enzyme complexes under semi-arid conditions[J].European Journal of Soil Biology,2012,53(6):94-102.
    [43]Szilagyi.Reduction of Fe3+ion by humic acid preparations[J].Soil Science,1971,111(4):233-235.
    [44]Ma C,Zhou S G,Lu Q,et al.Decolorization of Orange I under alkaline and anaerobic conditions by a newly isolated humus-reducing bacterium,Planococcus sp.MC01[J].International Biodeterioration&Biodegradation,2013,83(9):17-24.
    [45]Scott D T,Diane M.Mc Knight,E L.Blunt-Harris,et al.Quinone Moieties Act as Electron Acceptors in the Reduction of Humic Substances by Humics-Reducing Microorganisms[J].Environmental Science&Technology,1998,32(19):372.
    [46]马晨,杨贵芹,陆琴,等.Fontibactersp.SgZ-2厌氧腐殖质/Fe(Ⅲ)还原特性及电子传递机制研究[J].环境科学,2014,(9):3522-3529.
    [47]Mills R T E,Dewhirst N,Sowerby A,et al.Interactive effects of depth and temperature on CH4 and N2O flux in a shallow podzol[J].Soil Biology&Biochemistry,2013,62(5):1-4.
    [48]Lou X F,Nair J,Nair J.The impact of landfilling and composting on greenhouse gas emissions-a review[J].Bioresource Technology,2009,99(16):3792-3798.
    [49]Van Trump J I,Wrighton K C,Thrash J C,et al.Humic acid-oxidizing,nitrate-reducing bacteria in agricultural soils[J].Mbio.,2011,2(4):e00044.
    [50]姜杰,杨浈,任谦,等.土壤腐殖质氧化还原电位及其相应电子转移能力分布[J].环境化学,2015,(2):219-224.
    [51]李季.腐殖酸抑制及解抑制厌氧消化机理深探[D].北京:北京建筑大学,2018.
    [52]Khadem A F,Azman S,Plugge C M,et al.Effect of humic acids on the activity of pure and mixed methanogenic cultures[J].Biomass and Bioenergy,2017,99:21-30.
    [53]Ye R,Keller J K,Jin Q,et al.Peatland types influence the inhibitory effects of a humic substance analog on methane production[J].Geoderma,2016,265:131-140.
    [54]Lovley D R,Kashefi K,Vargas M,et al.Reduction of humic substances and Fe(Ⅲ)by hyperthermophilic microoganisms[J].Chemical Geology,2000,169:289-298.
    [55]Benz M,Schink B,Brune A.Humic acid reduction by Propionibacterium freudenreichii and other fermenting bacteria[J].Applied and Environmental Microbiology,1998,64(11):4507-4512.
    [56]Xu J,Zhuang L,Yang G,et al.Extracellular quinones affecting methane production and methanogenic community in paddy soil[J].Microbial Ecology,2013,66(4):950-960.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700