Cu~(2+)修饰的氮掺杂石墨烯量子点荧光传感器检测2-巯基苯并噻唑的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Determination of 2-Mercaptobenzothiazole Using a Fluorescence Sensor with Cu~(2+) Modified Nitrogen-doped Graphene Quantum Dots
  • 作者:王晓敏 ; 范哲锋
  • 英文作者:WANG Xiao-min;FAN Zhe-feng;College of Chemistry and Materials Science,Shanxi Normal University;
  • 关键词:氮掺杂石墨烯量子点(N-GQDs) ; 荧光传感器 ; 铜离子 ; 2-巯基苯并噻唑(MBT)
  • 英文关键词:nitrogen-doped graphene quantum dots(N-GQDs);;fluorescent sensor;;copper ion;;2-mercaptobenzothiazole(MBT)
  • 中文刊名:TEST
  • 英文刊名:Journal of Instrumental Analysis
  • 机构:山西师范大学化学与材料科学学院;
  • 出版日期:2019-06-25
  • 出版单位:分析测试学报
  • 年:2019
  • 期:v.38
  • 语种:中文;
  • 页:TEST201906011
  • 页数:6
  • CN:06
  • ISSN:44-1318/TH
  • 分类号:70-75
摘要
采用一步水热合成法制备了氮掺杂石墨烯量子点(N-GQDs),量子点表面的特定官能团与Cu~(2+)进一步结合后,形成N-GQDs-Cu~(2+)络合物,有效地猝灭了荧光。加入2-巯基苯并噻唑(MBT)时,由于MBT与Cu~(2+)具有强作用力,使得Cu~(2+)从量子点表面解离下来,量子点荧光恢复。据此构建了一种基于Cu~(2+)修饰的氮掺杂石墨烯量子点的高灵敏荧光传感器用于MBT的检测。在最佳实验条件下,MBT在0.4~40.0μmol/L浓度范围内与荧光恢复强度呈良好线性,检出限为0.1μmol/L。该方法用于实际水样中MBT的检测,加标回收率为95.0%~101%。
        In this paper,nitrogen-doped graphene quantum dots(N-GQDs) were prepared by one-step hydrothermal synthesis.Cu~(2+) ions were combined with the specific functional groups on surfaces of the quantum dots to form N-GQDs-Cu~(2+) complexes,which could quench fluorescence effectively.Furthermore,when 2-mercaptobenzothiazole(MBT) was added,Cu~(2+) were dissociated from the surface of the quantum dots due to the strong force of MBT and Cu~(2+),and the fluorescence from the quantum dots was recovered.Thus,a highly sensitive fluorescence sensor based on Cu~(2+) modified N-GQDs was constructed for the detection of MBT.Under the optimal experimental conditions,there was a good linear relationship between MBT and fluorescence recovery intensity in the concentration range of 0.4-40.0 μmol/L,and the limit of detection was 0.1 μmol/L.The method could be applied in the detection of MBT in real water samples with spiked recoveries of 95.0%-101%.
引文
[1] Lu Z,He M,Yang L,Ma Z,Yang L,Wang D,Yan Y,Shi W,Liu Y,Hua Z.RSC Adv.,2015,5(59):47820-47829.
    [2] Tietge J E,Degitz S J,Haselman J T,Butterworth B C,Korte J J,Kosian P A,Lindberg-Livingston A J,Burgess E M,Blackshear P E,Hornung M W.Aquat.Toxicol.,2013,126:128-136.
    [3] Redouane-Salah Z,Malouki M A,Khennaoui B,Santaballa J A,Canle M.J.Environ.Chem.Eng.,2018,6(2):1783-1793.
    [4] Jing P,Hou M,Zhao P,Tang X,Wan H.J.Environ.Sci.,2013,25(6):1139-1144.
    [5] Otukile K P,Mammino L,Kabanda M M.Comput.Theor.Chem.,2018,1125:112-127.
    [6] Reyes L H,Wrobel K,Wrobel K.Talanta,2002,56(3):515-521.
    [7] Manninen A,Auriola S,Varitiainen M,Liestvuori J,Turunen T,Pasanen M.Arch.Toxicol.,1996,70(9):579-584.
    [8] Parham H,Aibaghi B,Ghasemi J.J.Hazard.Mater.,2008,151(2/3):636-641.
    [9] Shahrokhian S,Amini M K,Mohammadpoor-Baltork I,Tangestaninejad S.Electroanalysis,2000,12(11):863-867.
    [10] Zhang X L,Sun R N,Yang X D.J.Instrum.Anal.(张晓蕾,孙如宁,杨小弟.分析测试学报),2015,34(2):159-163.
    [11] Fang B Y,Li C,Song Y Y,Tan F,Cao Y C,Zhao Y D.Biosens.Bioelectron.,2018,100:41-48.
    [12] Su D,Wang M,Liu Q,Qu Z,Su X.New J.Chem.,2018,42(20):17083-17090.
    [13] Sun H,Wu L,Gao N,Ren J,Qu X.ACS Appl.Mater.Interfaces,2013,5(3):1174-1179.
    [14] Yu H,Gao X L,Xu N,Chen X X,Feng X,Jin J.J.Instrum.Anal.(于浩,高小玲,徐娜,陈小霞,冯小,金君.分析测试学报),2016,35(11):1416-1421.
    [15] Kashani H M,Madrakian T,Afkhami A.New J.Chem.,2017,41(14):6875-6882.
    [16] Li Y,Zhao Y,Cheng H,Hu Y,Shi G,Dai L,Qu L.J.Am.Chem.Soc.,2011,134(1):15-18.
    [17] Yan Y,He X,Li W,Zhang Y.Biosens.Bioelectron.,2017,91:253-261.
    [18] Baker S N,Baker G A.Angew.Chem.Int.Ed.,2010,49(38):6726-6744.
    [19] Lin L,Song X,Chen Y,Rong M,Zhao T,Jiang Y,Wang Y,Chen X.Nanoscale,2015,7(37):15427-15433.
    [20] Huang H,Liao L,Xu X,Zou M,Liu F,Li N.Talanta,2013,117:152-157.
    [21] Liu L,Ma Q,Li Y,Liu Z,Su X.Talanta,2013,114:243-247.
    [22] Li D,Fan Z.New J.Chem.,2017,41(12):4763-4766.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700