基于有限元法分析钙化软骨层的生物力学作用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Biomechanical function of calcified cartilage zone based on finite element analysis
  • 作者:陈凯宁 ; 叶青 ; 农明善 ; 罗柳宁 ; 杨幸 ; 陈诚 ; 王富友
  • 英文作者:Chen Kaining;Ye Qing;Nong Mingshan;Luo Liuning;Yang Xing;Chen Cheng;Wang Fuyou;Department of Orthopedics,Guangxi General Hospital of Chinese People's Armed Police Force;Department of Joint Surgery,Southwest Hospital,Army Medical University (the Third Military Medical University);
  • 关键词:软骨 ; 骨和骨组织 ; 有限元分析 ; 生物力学 ; 组织工程 ; 透明软骨 ; 钙化软骨层 ; 软骨下骨 ; 软骨生物力学 ; 数字化骨科
  • 英文关键词:,Cartilage;;Bone and Bones;;Finite Element Analysis;;Biomechanics;;Tissue Engineering
  • 中文刊名:XDKF
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:武警广西总队医院骨科;陆军军医大学(第三军医大学)西南医院关节外科;
  • 出版日期:2018-10-17 09:55
  • 出版单位:中国组织工程研究
  • 年:2019
  • 期:v.23;No.861
  • 基金:国家自然科学基金重点项目(81271981),项目负责人:王富友;; 广西自然科学基金(2015GXNSFAA139168),项目负责人:陈凯宁~~
  • 语种:中文;
  • 页:XDKF201904011
  • 页数:6
  • CN:04
  • ISSN:21-1581/R
  • 分类号:59-64
摘要
背景:钙化软骨层为柔软的透明软骨与坚硬的软骨下骨能够稳定连接提供了重要保障。但目前对钙化软骨层在此中发挥的生物力学作用并不十分清楚。目的:利用有限元分析技术探讨钙化软骨层的生物力学作用。方法:自愿捐赠的人体正常股骨髁标本1个,依据仿生学原理,构建骨软骨复合组织的三维有限元模型。该模型包含透明软骨、钙化软骨层和软骨下骨3层结构。对模型分别施加压缩载荷(0.5-3.0 MPa)与剪切载荷(0.1-0.5 MPa),分析3层结构的应力分布情况。结果与结论:(1)在压缩与剪切载荷作用下,透明软骨的应力峰值范围分别为0.15-0.86 MPa与0.58-0.74 MPa,钙化软骨层的应力峰值范围分别为0.33-1.91 MPa与1.27-1.62 MPa,软骨下骨的应力峰值范围分别为0.55-3.22 MPa与2.36-2.98 MPa;(2)有限元分析法通过钙化软骨层的应力分布特征揭示了其生物力学作用,即介导负荷以逐级递增方式从透明软骨传至软骨下骨,使负荷在骨软骨复合组织的3层结构中得以顺利传递。
        BACKGROUND: Calcified cartilage zone is important for the stable connection between soft hyaline cartilage and hard subchondral bone.But the biomechanical role of calcified cartilage zone played in this process is poorly understood.OBJECTIVE: To explore the biomechanical role of calcified cartilage zone using finite element analysis.METHODS: Human normal femoral condyle specimen from a volunteer was obtained. According to the principle of bionics, a three-dimensional finite element model of osteochondral tissue was created with three compositions: hyaline cartilage, calcified cartilage zone and subchondral bone. The compression load(0.5-3.0 MPa) and shear load(0.1-0.5 MPa) were applied to the model respectively in order to analyze the stress distributions of three compositions.RESULTS AND CONCLUSION: Under compression load and shear load, the maximum stress of hyaline cartilage was 0.15-0.86 MPa and0.58-0.74 MPa, respectively. The maximum stress of calcified cartilage zone was 0.33-1.91 MPa and 1.27-1.62 MPa, respectively. The maximum stress of subchondral bone was 0.55-3.22 MPa and 2.36-2.98 MPa, respectively. Finite element analysis reveals the biomechanical role of calcified cartilage zone through the feature of its stress distribution. It mediates the load transfer from hyaline cartilage to subchondral bone in a stepwise-increase way, so that the load can transfer smoothly in three compositions of osteochondral tissue.
引文
[1]Burr DB.Anatomy and physiology of the mineralized tissues:role in the pathogenesis of osteoarthrosis.Osteoarthritis Cartilage.2004;12 Suppl A:S20-30.
    [2]Koszyca B,Fazzalari NL,Vernon-Roberts B.Quantitative analysis of the bone-cartilage interface within the knee.The Knee.1996;3(1-2):23-31.
    [3]Arkill KP,Winlove CP.Solute transport in the deep and calcified zonesof articular cartilage.Osteoarthritis Cartilage.2008;16(6):708-714.
    [4]Pan J,Zhou X,Li W,et al.In situ measurement of transport between subchondral bone and articular cartilage.J Orthop Res.2009;27(10):1347-1352.
    [5]Guévremont M,Martel-Pelletier J,Massicotte F,et al.Human adult chondrocytes express hepatocyte growth factor(HGF)isoforms but not Hg F:potential implication of osteoblasts on the presence of HGF in cartilage.J Bone Miner Res.2003;18(6):1073-1081.
    [6]宋伟,王富友,杨柳.关节软骨钙化层研究进展[J].中国修复重建外科杂志,2011,25(11):1339-1342.
    [7]Lories RJ,Luyten FP.The bone-cartilage unit in osteoarthritis.Nat Rev Rheumatol.2011;7(1):43-49.
    [8]Hoemann CD,Lafantaisie-Favreau CH,Lascau-Coman V,et al.The cartilage-bone interface.J Knee Surg.2012;25(2):85-97.
    [9]Wang F,Ying Z,Duan X,et al.Histomorphometric analysis of adult articular calcified cartilage zone.J Struct Biol.2009;168(3):359-365.
    [10]Mansfield JC,Winlove CP.A multi-modal multiphoton investigation of microstructure in the deep zone and calcified cartilage.J Anat.2012;220(4):405-416.
    [11]Zizak I,Roschger P,Paris O,et al.Characteristics of mineral particles in the human bone/cartilage interface.J Struct Biol.2003;141(3):208-217.
    [12]Norrdin RW,Kawcak CE,Capwell BA,et al.Calcified Cartilage Morphometry and Its Relation to Subchondral Bone Remodeling in Equine Arthrosis.Bone.1999;24(2):109-114.
    [13]Allan KS,Pilliar RM,Wang J,et al.Formation of biphasic constructs containing cartilage with a calcified zone interface.Tissue Eng.2007;13(1):167-177.
    [14]Hargrave-Thomas E,van Sloun F,Dickinson M,et al.Multi-scalar mechanical testing of the calcified cartilage and subchondral bone comparing healthy vs early degenerative states.Osteoarthritis Cartilage.2015;23(10):1755-1762.
    [15]王富友,杨柳,段小军,等.正常膝关节软骨钙化层形态结构研究[J].中国修复重建外科杂志,2008,22(5):524-527.
    [16]Stender ME,Carpenter RD,Regueiro RA,et al.An evolutionary model of osteoarthritis including articular cartilage damage,and bone remodeling in a computational study.J Biomech.2016;49(14):3502-3508.
    [17]Anderson DD,Brown TD,Radin EL.The influence of basal cartilage calcification on dynamic juxtaarticular stress transmission.Clin Orthop.1993;286:298-307.
    [18]Malekipour F,Oetomo D,Lee PV.Equine subchondral bone failure threshold under impact compression applied through articular cartilage.J Biomech.2016;49(10):2053-2059.
    [19]Goldring SR,Goldring MB.Changes in the osteochondral unit during osteoarthritis:structure,function and cartilage-bone crosstalk.Nat Rev Rheumatol.2016;12(11):632-644.
    [20]Lee WD,Hurtig MB,Pilliar RM,et al.Engineering of hyaline cartilage with a calcified zone using bone marrow stromal cells.Osteoarthritis Cartilage.2015;23(8):1307-1315.
    [21]王富友,杨柳,段小军,等.人体正常膝关节钙化软骨层组成成分研究[J].第三军医大学学报,2008,30(8):687-690.
    [22]Simha NK,Jin H,Hall ML,et al.Effect of indenter size on elastic modulus of cartilage measured by indentation.J Biomech Eng.2007;129(5):767-775.
    [23]Mente PL,Lewis JL.Elastic modulus of calcified cartilage is an order of magnitude less than that of subchondral bone.JOrthop Res.1994;12(5):637-647.
    [24]St-Pierre JP,Gan L,Wang J,et al.The incorporation of a zone of calcified cartilage improves the interfacial shear strength between in vitro-formed cartilage and the underlying substrate[J].Acta Biomater.2012;8(4):1603-1615.
    [25]Turley SM,Thambyah A,Riggs CM,et al.Microstructural changes in cartilage and bone related to repetitive overloading in an equine athlete model.J Anat.2014;224(6):647-658.
    [26]Burr DB,Radin EL.Microfractures and microcracks in subchondral bone:are they relevant to osteoarthrosis?Rheum Dis Clin North Am.2003;29(4):675-685.
    [27]Herman BC,Cardoso L,Majeska RJ,et al.Activation of bone remodeling after fatigue:differential response to linear microcracks and diffuse damage.Bone.2010;47(4):766-772.
    [28]Dar FH,Aspden RM.A finite element model of an idealized diarthrodial joint to investigate the effects of variation in the mechanical properties of the tissues.Proc Inst Mech Eng H.2003;217(5):341-348.
    [29]陈凯,张德坤,戴祖明,等.牛膝关节软骨的力学承载特性及其有限元仿真分析[J].医用生物力学,2007,27(6):675-680.
    [30]Warner MD,Taylor WR,Cliff SE.Cyclic loading moves the peak stress to the cartilage surface in a biphasic model with isotropic solid phase properties.Med Eng Phys.2004;26(3):247-249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700