高压下页岩气吸附量计算新方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:New method for calculating shale gas adsorption amount at high pressure
  • 作者:陈花 ; 关富佳 ; 张杰 ; 胡海燕 ; 卢申辉
  • 英文作者:CHEN Hua;GUAN Fujia;ZHANG Jie;HU Haiyan;LU Shenhui;Petroleum Engineering College,Yangtze University;Hubei Cooperative Innovation Center of Unconventional Oil and Gas,Yangtze University;Gudong Oil Production Plant,Shengli Oilfield Company,SINOPEC;
  • 关键词:页岩气 ; 体积法 ; 压缩因子 ; 吸附量 ; 模型拟合
  • 英文关键词:shale gas;;volumetric method;;compressibility factor;;adsorption amount;;model fitting
  • 中文刊名:YQCS
  • 英文刊名:Petroleum Geology and Recovery Efficiency
  • 机构:长江大学石油工程学院;长江大学非常规油气湖北省协同创新中心;中国石化胜利油田分公司孤东采油厂;
  • 出版日期:2019-03-05 17:52
  • 出版单位:油气地质与采收率
  • 年:2019
  • 期:v.26;No.137
  • 基金:国家自然科学基金项目“四川盆地龙马溪组页岩气成藏机理及其主控因素”(41472122)
  • 语种:中文;
  • 页:YQCS201902012
  • 页数:7
  • CN:02
  • ISSN:37-1359/TE
  • 分类号:91-97
摘要
体积法和重量法是页岩气吸附实验的两种重要方法,相比基于MSB磁悬浮测量的重量法,体积法的实验仪器结构和原理简单,造价也低,是目前中国进行页岩气吸附实验评价的主要手段。然而,体积法的最大问题在于气体压缩因子计算不准确,尤其在高压下,利用该方法对实验数据进行吸附量计算时会产生较大误差。针对体积法在高压下的不适应性,采用编程计算7种复杂气体状态方程压缩因子,并将计算结果与美国NIST数据库中Chemistry部分计算的甲烷压缩因子进行对比,结果表明:Setzmann方程不论在高压还是低压下气体压缩因子的计算精度均较高,解决了体积法在高压下的不适应性;应用改进前后的体积法分别对实际页岩气等温吸附实验数据进行解释,当平衡压力超过5 MPa时,两者计算吸附量差异随平衡压力增大而增大,平衡压力为30 MPa左右的极限吸附量相差0.426 5 mL/g,可见气体压缩因子计算精度的重要性;应用吸附理论模型对实验测得页岩气吸附等温线进行拟合,发现Toth吸附模型拟合精度最高。
        Volumetric method and gravimetric method are two important methods for shale gas adsorption experiment. Com-pared with the gravimetric method based on magnetic suspension balance(MSB),the instrument of volumetric method hassimple structure and principle,and low cost. The volumetric method is the main means to evaluate the shale gas adsorptionexperiments in China. However,the biggest problem of the volumetric method is that the calculation of the gas compressibil-ity factor is inaccurate,especially when this method is used to calculate the adsorption amount at high pressure. In order tosolve this problem,the compressibility factors of seven complex gas state equations were calculated through programming,and the calculated results were compared with those calculated in the Chemistry part of NIST database in USA. The resultsshow that the gas compressibility factor calculated by the Setzmann equation is accurate at both high and low pressures,which solves the shortage of the volumetric method at high pressure. The actual shale gas isotherm data was interpreted bythe volumetric method and the improved volumetric method respectively. The result shows that when the equilibrium pres-sure exceeds 5 MPa,the adsorption amount difference increases with the increase of equilibrium pressure,the maximum ad-sorption amount difference is 0.426 5 mL/g at equilibrium pressure of about 30 MPa,which indicates the importance of ac-curate calculating the gas compressibility factor. The adsorption isotherm of the shale gas was fitted by the adsorption theo-ry model. The results show that Toth adsorption model has the highest accuracy.
引文
[1]葛岩,万欢,黄志龙,等.页岩气储层微观孔隙结构影响因素及“三元”耦合控制作用[J].油气地质与采收率,2018,25(5):17-23.GE Yan,WAN Huan,HUANG Zhilong,et al.Influencing factors and three-element coupled control on microscopic pore structure in shale gas reservoir[J].Petroleum Geology and Recovery Efficiency,2018,25(5):17-23.
    [2]曲冠政,周德胜,彭娇,等.基于Lattice Boltzmann方法的页岩张性裂缝渗流特征研究[J].特种油气藏,2018,25(1):134-139.QU Guanzheng,ZHOU Desheng,PENG Jiao,et al.Seepage characteristics of tension fractures in shale based on Lattice Boltzmann method[J].Special Oil&Gas Reservoirs,2018,25(1):134-139.
    [3]康建威,林小兵,余谦,等.复杂构造背景区页岩气富集条件研究--以大巴山前缘地区为例[J].石油实验地质,2017,39(4):437-443.KANG Jianwei,LIN Xiaobing,YU Qian,et al.Shale gas enrichment conditions in complex geological structure areas:A case study in the front margin of Daba Mountain[J].Petroleum Geology&Experiment,2017,39(4):437-443.
    [4]陈元千,汤晨阳,陈奇.等温吸附量计算方法的推导及应用[J].油气地质与采收率,2018,25(6):56-62.CHEN Yuanqian,TANG Chenyang,CHEN Qi.Derivation and application of isothermal adsorption rate calculation method[J].Petroleum Geology and Recovery Efficiency,2018,25(6):56-62.
    [5]胡微雪,薛晓辉,李维,等.页岩含气量测定方法分析与优化[J].中外能源,2014,19(11):61-66.HU Weixue,XUE Xiaohui,LI Wei,et al.Analysis and optimization on determination method of gas content of the shale[J].SinoGlobal Energy,2014,19(11):61-66.
    [6]李武广,杨胜来,徐晶,等.考虑地层温度和压力的页岩吸附气含量计算新模型[J].天然气地球科学,2012,23(4):791-796.LI Wuguang,YANG Shenglai,XU Jing,et al.A new model for shale adsorptive gas amount under a certain geological conditions of temperature and pressure[J].Natural Gas Geoscience,2012,23(4):791-796.
    [7]邢翔,胡望水,吉林,等.基于等温吸附实验的页岩吸附气含量计算新方法[J].科学技术与工程,2013,13(16):4 659-4 662.XING Xiang,HU Wangshui,JI Lin,et al.Based on the isothermal adsorption experiments of shale gas content calculation method[J].Science Technology&Engineering,2013,13(16):4 659-4 662.
    [8]曾鑫,孙建孟,崔红珠.变等温页岩吸附气体积计算模型[J].测井技术,2014,38(3):286-291.ZENG Xin,SUN Jianmeng,CUI Hongzhu.Shale adsorbed gas volume calculation model under varied temperature[J].Well Logging Technology,2014,38(3):286-291.
    [9]陈磊,姜振学,邢金艳,等.川西坳陷新页HF-1井须五段泥页岩吸附气含量主控因素及其定量预测模型[J].现代地质,2014,28(4):824-831.CHEN Lei,JIANG Zhenxue,XING Jinyan,et al.Main controlling factors and prediction model of adsorbed gas content in the fifth member of Xujiahe formation from well Xinye HF-1,western Sichuan depression[J].Geoscience,2014,28(4):824-831.
    [10]王建国,李忠刚,顾岱鸿,等.考虑有机质含量的页岩吸附气含量计算模型及其应用[J].科学技术与工程,2014,14(22):28-33.WANG Jianguo,LI Zhonggang,GU Daihong,et al.The calculation model for shale absorption gas content considering the organic content and its application[J].Science Technology&Engineering,2014,14(22):28-33.
    [11]朱汉卿,贾爱林,位云生,等.低温氩气吸附实验在页岩储层微观孔隙结构表征中的应用[J].石油实验地质,2018,40(4):559-565.ZHU Hanqing,JIA Ailin,WEI Yunsheng,et al.Microscopic pore structure characteristics of shale reservoir based on low-temperature argon adsorption experiments[J].Petroleum Geology&Experiment,2018,40(4):559-565.
    [12]张庆玲,张遂安.煤的高压等温吸附试验方法:GB/T19560-2008[S].北京:中国标准出版社,2008.ZHANG Qingling,ZHANG Suian.Experimental method of highpressure isothermal adsorption to coal:GB/T 19560-2008[S].Beijing:Standards Press of China,2008.
    [13]陈元千,齐亚东,傅礼兵,等.井控页岩气可动地质储量和可采储量的评价方法[J].油气地质与采收率,2018,25(4):73-78.CHEN Yuanqian,QI Yadong,FU Libing,et al.Methods for estimating well-controlled movable in-place and recoverable reserves of shale gas[J].Petroleum Geology and Recovery Efficiency,2018,25(4):73-78.
    [14]周理,吕昌忠,王怡林,等.述评超临界温度气体在多孔固体上的物理吸附[J].化学进展,1999,11(3):221-226.ZHOU Li,LüChangzhong,WANG Yilin,et al.Physisorption of gases on porous solids at above-critical temperatures[J].Progress in Chemistry,1999,11(3):221-226.
    [15]崔永君.煤等温吸附特性测试中体积校正方法探讨[J].煤田地质与勘探,1999,27(5):29-32.CUI Yongjun.Discussion on the volume correction method in the isothermal adsorption measurement of coal[J].Coal Geology&Exploration,1999,27(5):29-32.
    [16]李相方,任美鹏,胥珍珍,等.高精度全压力全温度范围天然气偏差系数解析计算模型[J].石油钻采工艺,2010,32(6):57-62.LI Xiangfang,REN Meipeng,XU Zhenzhen,et al.A high-precision and whole pressure temperature range analytical calculation model of natural gas Z-factor[J].Oil Drilling&Production Technology,2010,32(6):57-62.
    [17]DRANCHUK P M,ABUKASSM J H.Calculations of Z factors for natural gases using eguations of state[J].Journal of Canadian Petroleum,1975,14(3):34-36.
    [18]李相方,刚涛,庄湘琦,等.高压天然气偏差系数的高精度解析模型[J].石油大学学报:自然科学版,2001,25(6):45-46,51.LI Xiangfang,GANG Tao,ZHUANG Xiangqi,et al.A analytic model with high precision for calculating compressibility factor of high-pressure gas[J].Journal of the University of Petroleum,China:Edition of Natural Science,2001,25(6):45-46,51.
    [19]WAALS J D V D.The equation of state for gases and liquids(Reprinted from Nobel Lecture,December,1910)[J].Journal of Supercritical Fluids,2010,55(2):403-414.
    [20]陈磊,冷明,任帅,等.状态方程在气固相平衡计算中的应用[J].当代化工,2014,43(6):1 121-1 123,1 129.CHEN Lei,LENG Ming,REN Shuai,et al.Application of EOS in calculation of gas and solid phase equilibrium[J].Contemporary Chemical Industry,2014,43(6):1 121-1 123,1 129.
    [21]SOAVE G.Equilibrium constants from a modified Redlich-Kwong equation of state[J].Chemical Engineering Science,1972,27(6):1 197-1 203.
    [22]PENG D Y,ROBINSON D B.A new two-constant equation of state[J].Industrial&Engineering Chemistry Fundamentals,1976,15(1):92-94.
    [23]STRYJEK R,VERA J H.PRSV:An improved Peng-Robinson equation of state for pure compounds and mixtures[J].Canadian Journal of Chemical Engineering,1986,(2):323-333.
    [24]STRYJEK R,VERA J H.PRSV2:A cubic equation of state for accurate vapor-liquid equilibria calculations[J].Canadian Journal of Chemical Engineering,2010,(5):820-826.
    [25]JRE Jr,SURESH S J,DONOHUE M D.A simple equation of state for nonspherical and associating molecules[J].Industrial&Engineering Chemistry Research,1990,29(7):1 476-1 485.
    [26]SETZMANN U,WAGNER W.A new equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625 K at pressures up to 100 MPa[J].Journal of Physical&Chemical Reference Data,1991,20(6):1 061-1 155.
    [27]贺然,李治平,赖枫鹏,等.页岩气吸附模型的适用性研究[J].中国石油勘探,2018,23(1):100-108.HE Ran,LI Zhiping,LAI Fengpeng,et al.Study on the applicability of adsorption models to shale Gas[J].China Petroleum Exploration,2018,23(1):100-108.
    [28]梁洪彬,向祖平,肖前华,等.页岩气吸附模型对比分析与应用[J].大庆石油地质与开发,2017,36(6):159-167.LIANG Hongbin,XIANG Zuping,XIAO Qianhua,et al.Comparative analysis and application of the shale gas absorbing model[J].Petroleum Geology&Oilfield Development in Daqing,2017,36(6):159-167.
    [29]于洪观,范维唐,孙茂远,等.煤中甲烷等温吸附模型的研究[J].煤炭学报,2004,29(4):463-467.YU Hongguan,FAN Weitang,SUN Maoyuan,et al.Study on fitting models for methane isotherms adsorption of coals[J].Journal of China Coal Society,2004,29(4):463-467.
    [30]熊健,刘向君,梁利喜,等.页岩气超临界吸附的DubibinAstakhov改进模型[J].石油学报,2015,36(7):849-857.XIONG Jian,LIU Xiangjun,LIANG Lixi,et al.Improved DubibinAstakhov model for shale-gas supercritical adsorption[J].Acta Petrolei Sinica,2015,36(7):849-857.
    [31]郭怀志,潘保芝,张丽华,等.页岩吸附模型及吸附气含气量计算方法进展[J].地球物理学进展,2016,31(3):1 080-1 087.GUO Huaizhi,PAN Baozhi,ZHANG Lihua,et al.Progress in adsorption model and calculation method of adsorbed gas content of shale[J].Progress in Geophysics,2016,31(3):1 080-1 087.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700