发酵麸皮多糖对大鼠组织细胞因子含量及盲肠菌群结构的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Fermented Wheat Bran Polysaccharides on Tissue Cytokine Contents and Caecal Microflora Structure of Rats
  • 作者:王文文 ; 王园 ; 郝希然 ; 段元霄 ; 安晓萍 ; 齐景伟
  • 英文作者:WANG Wenwen;WANG Yuan;HAO Xiran;DUAN Yuanxiao;AN Xiaoping;QI Jingwei;College of Animal Science,Inner Mongolia Agricultural University;
  • 关键词:发酵麸皮多糖 ; 大鼠 ; 细胞因子 ; 肠道菌群 ; 高通量测序
  • 英文关键词:fermented wheat bran polysaccharides;;rats;;cytokine;;gut microflora;;high-throughput sequencing
  • 中文刊名:DWYX
  • 英文刊名:Chinese Journal of Animal Nutrition
  • 机构:内蒙古农业大学动物科学学院;
  • 出版日期:2019-05-08 09:38
  • 出版单位:动物营养学报
  • 年:2019
  • 期:v.31
  • 基金:国家自然科学基金项目(31601969);; 内蒙古自治区高等学校科学研究项目(NJZY17070)
  • 语种:中文;
  • 页:DWYX201906047
  • 页数:10
  • CN:06
  • ISSN:11-5461/S
  • 分类号:422-431
摘要
本试验旨在探讨发酵麸皮多糖对大鼠组织细胞因子含量及盲肠菌群结构的影响。选取75只健康断奶SD大鼠,随机分为3组,每组5重复,每个重复5只。对照组、低剂量组和高剂量组分别灌胃0、100、200 mg/kg BW发酵麸皮多糖。试验期为21 d。试验结束后,每个重复随机选取1只大鼠进行屠宰,采集空肠、肝脏和脾脏组织及盲肠食糜,通过酶联免疫吸附试验法测定组织中细胞因子白细胞介素-1β(IL-1β)、白细胞介素-2(IL-2)、白细胞介素-6(IL-6)及肿瘤坏死因子-α(TNF-α)的含量,利用Illumina-HiSeq高通量测序技术分析盲肠菌群结构。结果表明:1)低剂量组大鼠各组织中IL-1β、IL-2、IL-6和TNF-α的含量均较对照组有所升高,其中脾脏组织中TNF-α含量与对照组的差异达到显著水平(P<0.05);高剂量组大鼠肝脏组织中IL-2和脾脏组织中IL-6的含量均较对照组显著降低(P<0.05);低剂量组大鼠空肠组织中TNF-α、肝脏组织中IL-2及脾脏组织中IL-6的含量显著高于高剂量组(P<0.05)。2)与对照组相比,灌胃100、200 mg/kg BW发酵麸皮多糖后大鼠盲肠菌群Shannon、Chao1、ACE指数有提高趋势,但差异未达显著水平(P>0.05)。在门水平上,与对照组相比,灌胃100和200 mg/kg BW发酵麸皮多糖均显著提高了大鼠盲肠食糜中厚壁菌门(Firmicutes)的相对丰度(P<0.05),并显著降低了拟杆菌门(Bacteroidetes)的相对丰度(P<0.05)。在属水平上,低剂量组和高剂量组大鼠盲肠食糜中普氏菌属9(Prevotella_9)的相对丰度较对照组显著降低(P<0.05);低剂量组中短链脂肪酸产生菌瘤胃球菌属1(Ruminococcus_1)以及高剂量组中短链脂肪酸产生菌粪球菌属1(Coprococcus_1)的相对丰度均较对照组显著增加(P<0.05)。综上所述,在本试验条件下,灌胃低剂量(100 mg/kg BW)发酵麸皮多糖可增加大鼠组织中细胞因子含量,调控其盲肠菌群结构,进而提高其免疫力。
        This experiment was conducted to investigate the effects of fermented wheat bran polysaccharides( FWBPs) on tissue cytokine contents and caecal microflora structure of rats. Seventy-five healthy weaned SD rats were randomly assigned to 3 groups with 5 replicates per group and 5 rats per replicate. Rats in the 3 groups were lavaged daily with FWBPs solution at doses of 0( control group),100( lowFWBPs group) and200 mg/kg BW( high FWBPs group). The experiment was carried out for 21 days. At the end of the experiment,one rat was selected from each replicate and slaughtered. The jejunum,liver and spleen tissues were collected to measure the cytokines such as interleukin( IL)-1β,IL-2,IL-6 and tumor necrosis factor-α( TNF-α)contents by enzyme linked immunosorbent assay( ELISA) method,and the structure of caecal microflora was analyzed by Illumina HiSeq high through sequencing technology. The results showed as follows: 1) lavage of FWBPs at 100 mg/kg BW improved IL-1β,IL-2,IL-6 and TNF-α content in tissues of rats,and the TNF-αcontent in spleen tissue of rats was significantly improved compared with control group( P < 0.05); compared with control group,the contents of IL-2 in liver tissue and IL-6 in spleen tissue were significantly decreased in high FWBPs group( P<0.05); the contents of TNF-α in jejunum tissue,IL-2 in liver tissue and IL-6 in spleen tissue of rats in lowFWBPs group were significantly higher than those in high FWBPs group( P < 0. 05). 2)Lavage of FWBPs at 100 and 200 mg/kg BW both enhanced Shannon,Chao1 and ACE indices compared with control group( P>0.05). At the phylum level,lavage of FWBPs at 100 and 200 mg/kg BW both significantly improved the relative abundance of Firmicutes and significantly decreased the relative abundance of Bacteroidetes in caecal chyme compared with control group( P < 0.05). At the genus level,compared with control group,the relative abundance of Prevotella_9 in caecal chyme in lowand high FWBPs groups was significantly decreased( P<0.05),while the relative abundances of short-chain fatty acid producing bacteria Ruminococcus_1 in lowFWBPs group and Coprococcus_1 in high FWBPs group were significantly increased( P < 0.05). In conclusion,lavage of lowdose( 100 mg/kg BW) FWBPs can increase the contents of cytokine in tissues and regulate the structure of caecal microflora,which may further enhance the immunity of rats.[Chinese Journal of Animal Nutrition,2019,31( 6) : 2865-2874]
引文
[1]吕小华,王会敏,韩红霞,等.猫爪草多糖免疫调节及抗氧化活性研究[J].中国中药杂志,2010,35(14):1862-1865.
    [2]孟祥乐,薛磊,张振巍,等.马齿苋多糖对环磷酰胺模型小鼠免疫功能的影响[J].中国新药杂志,2017,26(11):1296-1300.
    [3]LEE J S,SYNYTSYA A,KIM H B,et al.Purification,characterization and immunomodulating activity of a pectic polysaccharide isolated from Korean mulberry fruit oddi(Morus alba L.)[J].International Immunopharmacology,2013,17(3):858-866.
    [4]GOU C L,WANG J Z,WANG Y Q,et al.Hericium caput-medusae(Bull.:Fr.)pers.Polysaccharide enhance innate immune response,immune-related genes expression and disease resistance against Aeromonas hydrophila in grass carp(Ctenopharyngodon idella)[J].Fish&Shellfish Immunology,2018,72:604-610.
    [5]蔺艳君,刘丽娅,钟葵,等.不同来源小麦麸皮营养成分及酚类物质含量的比较[J].现代食品科技,2014,30(12):194-200.
    [6]MAES C,DELCOUR J A.Structural characterisation of w ater-extractable and w ater-unextractable arabinoxylans in w heat bran[J].Journal of Cereal Science,2002,35(3):315-326.
    [7]SHEN T,WANG G C,YOU L,et al.Polysaccharide from w heat bran induces cytokine expression via the Toll-like receptor 4-mediated p38 M APK signaling pathw ay and prevents cyclophosphamide-induced immunosuppression in mice[J].Food&Nutrition Research,2017,61(1):1344523.
    [8]CAO L,LIU X Z,QIAN T X,et al.Antitumor and immunomodulatory activity of arabinoxylans:a major constituent of w heat bran[J].International Journal of Biological M acromolecules,2011,48(1):160-164.
    [9]HIGUCHI M,OSHIDA J,ORINO K,et al.Wheat bran protects Fischer-344 rats from diquat-induced oxidative stress by activating antioxidant system:selenium as an antioxidant[J].Bioscience,Biotechnology,and Biochemistry,2011,75(3):496-499.
    [10]YANG J Y,MALDONADO-GMEZ M X,HUT-KINS R W,et al.Production and in vitro fermentation of soluble,non-digestible,feruloylated oligo-and polysaccharides from maize and w heat brans[J].Journal of Agricultural and Food Chemistry,2014,62(1):159-166.
    [11]ZHAO H M,GUO X N,ZHU K X,et al.Impact of solid state fermentation on nutritional,physical and flavor properties of w heat bran[J].Food Chemistry,2017,217:28-36.
    [12]MANINI F,BRASCA M,PLUMED-FERRER C,et al.Study of the chemical changes and evolution of microbiota during sourdoughlike fermentation of w heat bran[J].Cereal Chemistry,2014,91(4):342-349.
    [13]史俊祥.麸皮多糖微生物发酵制备及其粗制品抗氧化活性的研究[D].硕士学位论文.呼和浩特:内蒙古农业大学,2017.
    [14]王园,史俊祥,段元霄,等.麸皮多糖微生物发酵工艺优化及其抗炎活性[J].食品科学,2018,39(14):192-198.
    [15]安晓萍,王园,史俊祥,等.一种发酵麸皮多糖的提取及其对大鼠的抗氧化作用[J].食品工业科技,2018,39(16):281-285.
    [16]CHO I,BLASER M J.The human microbiome:at the interface of health and disease[J].Nature Review s Genetics,2012,13(4):260-270.
    [17]CHANG C J,LIN C S,LU C C,et al.Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota[J].Nature Communications,2015,6:7489.
    [18]杨利娜,边高瑞,朱伟云.单胃动物肠道微生物菌群与肠道免疫功能的相互作用[J].微生物学报,2014,54(5):480-486.
    [19]MAGO CˇT,SALZBERG S L.FLASH:fast length adjustment of short reads to improve genome assemblies[J].Bioinformatics,2011,27(21):2957-2963.
    [20]BOKULICH N A,SUBRAMANIAN S,FAITH J J,et al.Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing[J].Nature M ethods,2013,10(1):57-59.
    [21]CAPORASO J G,KUCZYNSKI J,STOMBAUGH J,et al.QIIM E allow s analysis of high-throughput community sequencing data[J].Nature M ethods,2010,7(5):335-336.
    [22]EDGAR R C,HAAS B J,CLEMENTE J C,et al.UCHIM E improves sensitivity and speed of chimera detection[J].Bioinformatics,2011,27(16):2194-2200.
    [23]EDGAR R C.UPARSE:highly accurate OTU sequences from microbial amplicon reads[J].Nature M ethods,2013,10(10):996-998.
    [24]WANG Q,GARRITY G M,TIEDJE J M,et al.Na6ve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J].Applied and Environmental M icrobiology,2007,73(16):5261-5267.
    [25]QUAST C,PRUESSE E,YILMAZ P,et al.The SIL-VA ribosomal RNA gene database project:improved data processing and w eb-based tools[J].Nucleic Acids Research,2013,41(D1):D590-D596.
    [26]徐晓飞.香菇多糖L2的免疫调节机理研究[D].博士学位论文.广州:华南理工大学,2014.
    [27]赵秋芳.黑附片对免疫抑制小鼠免疫功能及肠道菌群的影响[D].硕士学位论文.西安:陕西师范大学,2017.
    [28]HUANG S Q,NING Z X.Extraction of polysaccharide from G anoderma lucidum and its immune enhancement activity[J].International Journal of Biological M acromolecules,2010,47(3):336-341.
    [29]GLOVSKY M M,CORTES-HAENDCHEN L,GHEKIERE L,et al.Effects of particulateβ-1,3 glucan on human,rat,and guinea pig complement activity[J].Journal of the Reticuloendothelial Society,1983,33(5):401-413.
    [30]CHIHARA G.Immunopharmacology of lentinan,a polysaccharide isolated from Lentinus edodus:its application as a host defence potentiator[J].International Journal of Oriental M edicine,1992,17:57-77.
    [31]连晓蔚.肠道菌群利用几种膳食纤维体外发酵产短链脂肪酸的研究[D].硕士学位论文.广州:暨南大学,2011.
    [32]王敏,帅天罡,秦清娟,等.魔芋葡甘低聚糖对大鼠肠道环境的影响[J].食品科学,2016,37(7):197-203.
    [33]柒启恩,肖俊峰,张军,等.围产期母猪饲粮中添加壳寡糖对母猪、仔猪免疫功能及母猪肠道微生物的影响[J].动物营养学报,2018,30(10):4105-4112.
    [34]郭传珍,曹兵海.丁酸钠对肉鸡肠道pH值、微生物菌群和挥发性脂肪酸的影响研究[J].中国家禽,2009,31(21):14-17,21.
    [35]王雪,赵龙玉,赵凤春,等.应用Illumina高通量测序技术探究长根菇多糖对小鼠肠道菌群的影响[J].食品科学,2015,36(19):222-226.
    [36]马宁,刘希望,孔晓军,等.长期饲喂高脂饲料对大鼠血脂、肝及肠道菌群的影响[J].畜牧兽医学报,2017,48(7):1271-1280.
    [37]梁欢,赵向辉,许兰娇,等.烟酸、果寡糖及柠檬酸稀土组合对肉牛瘤胃体外发酵特性及菌群结构的影响[J].动物营养学报,2018,30(5):1996-2005.
    [38]王四新,季海峰,石国华,等.干酪乳杆菌对北京黑猪保育阶段生长性能及肠道菌群的影响[J].动物营养学报,2018,30(1):326-335.
    [39]李佳彦,陈代文,余冰,等.单胃动物肠道菌群与宿主肠道免疫系统的互作关系及可能机制[J].动物营养学报,2017,29(7):2252-2260.
    [40]DU C T,GAO W,MA K,et al.MicroRNA-146a deficiency protects against Listeria monocytogenes infection by modulating the gut microbiota[J].International Journal of M olecular Sciences,2018,19(4):993.
    [41]林日添,吴维,刘占举,等.短链脂肪酸对肠黏膜稳态免疫调节作用的研究进展[J].免疫学杂志,2017,33(10):900-904.
    [42]王淑媛,宋慧.鸡肠道菌群和短链脂肪酸相互关系的研究进展[J].中国微生态学杂志,2018,30(7):849-852.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700