基于响应面法的聚苯乙烯粉末选择性激光烧结成型工艺参数优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Process Parameters Optimization of Polystyrene Powder Selective Laser Sintering Based on Response Surface Methodology
  • 作者:鄢然 ; 李浩 ; 李军超 ; 朱丽
  • 英文作者:Yan Ran;Li Hao;Li Junchao;Zhu Li;Mechanical college, Chongqing University of Technology;College of Materials science and engineering, Chongqing University;
  • 关键词:激光技术 ; 选择性激光烧结 ; 响应面法 ; 尺寸精度 ; 聚苯乙烯粉末
  • 英文关键词:laser technique;;selective laser sintering;;response surface methodology;;dimensional accuracy;;polystyrene powder
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:重庆理工大学机械工程学院;重庆大学材料科学与工程学院;
  • 出版日期:2018-12-27 10:59
  • 出版单位:中国激光
  • 年:2019
  • 期:v.46;No.507
  • 基金:国家自然科学基金(51775069);; 重庆市教育委员会科学技术研究项目(KJQN201801118)
  • 语种:中文;
  • 页:JJZZ201903017
  • 页数:8
  • CN:03
  • ISSN:31-1339/TN
  • 分类号:138-145
摘要
以聚苯乙烯粉末为实验材料,以尺寸精度作为评价指标,研究了激光功率、扫描间距、单层厚度、扫描速度及它们的交互作用对选择性激光烧结制件成型精度的影响,通过响应面法建立了工艺参数与尺寸精度之间的数学模型,得出了最优的工艺参数。研究结果表明,尺寸偏差率随激光功率与扫描速度的增大而减小,随单层厚度的增大先增大后减小,随扫描间距的增大而增大;激光功率和单层厚度及扫描间距和单层厚度的交互作用对尺寸偏差率影响较显著;响应面预测值与实际值最大误差低于7%。
        Taking polystyrene powder as experimental material and dimensional accuracy as evaluation index, we study the effects of laser power, scanning pitch, layer thickness and scanning speed and their interactions on the forming precision of selective laser sintering parts. The mathematical model between process parameters and dimensional accuracy are achieved and the optimal process parameters are obtained by response surface methodology. The research results show that the dimensional deviation rate decreases with the increase of laser power and scanning speed, increases at first and then decreases with the increase of layer thickness, and increases with the increase of scanning pitch. The interaction between laser power and single layer thickness and the interaction between scanning pitch and layer thickness have a significant effect on the dimensional deviation rate. The maximum error between the predicted value of the response surface method and the actual value is less than 7%.
引文
[1] Du Y Y, Liu H M, Yang Q, et al. Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits[J]. Biomaterials, 2017, 137: 37-48.
    [2] Wei Q, Wang R N, Xu Q Y, et al. Effects of process parameters on dimensional precision and tensile strength of wax patterns for investment casting by selective laser sintering[J]. China Foundry, 2018, 15(4): 299-306.
    [3] Dadbakhsh S, Verbelen L, Verkinderen O, et al. Effect of PA12 powder reuse on coalescence behaviour and microstructure of SLS parts[J]. European Polymer Journal, 2017, 92: 250-262.
    [4] Verbelen L, Dadbakhsh S, van den Eynde M, et al. Characterization of polyamide powders for determination of laser sintering processability[J]. European Polymer Journal, 2016, 75: 163-174.
    [5] Fu C A, Chen P H. Research of curl distortion and raster scanning way of selective laser sintering[J]. China Foundry, 2008, 57(12): 1237-1240. 傅蔡安, 陈佩胡. 选择性激光烧结的翘曲变形与扫描方式的研究[J]. 铸造, 2008, 57(12): 1237-1240.
    [6] Shi Y S, Huang S H, Pan C Y. A kind of artificial intelligent method and system for automatic optimization of selective laser sintering process[J]. Mechanical Science and Technology, 2003, 22(2): 259-264. 史玉升, 黄树槐, 潘传友. 选择性激光烧结工艺参数智能优化方法研究[J]. 机械科学与技术, 2003, 22(2): 259-264.
    [7] Ren J W, Yin J J, Dong L J. The quality prediction of SLS part based on BP neural network[J]. Machine Tool & Hydraulics, 2012, 40(21): 15-18. 任继文, 殷金菊, 董连杰. 基于BP神经网络的SLS烧结件质量的预测[J]. 机床与液压, 2012, 40(21): 15-18.
    [8] Wang C Y, Chen Y, Dong Q. Research on tensile strength of selective laser sintering polystyrene[J]. Applied Laser, 2014, 34(5): 377-382. 王传洋, 陈瑶, 董渠. 选择性激光烧结聚苯乙烯拉伸强度研究[J]. 应用激光, 2014, 34(5): 377-382.
    [9] Yang X S, Wang Y, Chen Y W. Study on properties of nylon 6 powder for selective laser sintering[J]. China Plastics Industry, 2018, 46(3): 135-138. 杨旭生, 汪艳, 陈亚武. 选择性激光烧结用尼龙6粉末的性能研究[J]. 塑料工业, 2018, 46(3): 135-138.
    [10] Shuai C J. The research on warp distortion inhibition of selective laser sintering[D]. Wuhan: Huazhong University of Science and Technology, 2007. 帅昌俊. 选择性激光烧结翘曲变形抑制研究[D]. 武汉: 华中科技大学, 2007.
    [11] Li N, Wang G C. Effect of the sintering parameters on precision and strength of parts form with selective laser sintering[J]. Die & Mould Manufacture, 2004, 4(10): 51-54. 李宁, 王高潮. SLS烧结参数对快速成型制件精度与强度的影响[J]. 模具制造, 2004, 4(10): 51-54.
    [12] Xu C, Wang B, Yang L X. Effect of selective laser sintering process parameters on the forming precision of PS /PE hybrid powder [J]. China Plastics Industry, 2018, 46(8): 64-68, 127. 徐超, 王勃, 杨来侠. 选区激光烧结工艺参数对PS/PE混合粉末成型精度的影响[J]. 塑料工业, 2018, 46(8): 64-68, 127.
    [13] Gao Y. Research on virginiamycin fermentation medium and process optimization[D]. Tianjin: Tianjin University, 2011. 高远. 维吉尼亚霉素发酵培养基及发酵条件优化[D]. 天津: 天津大学, 2011.
    [14] Xu X H, He M Z. Experimental design and Design-Expert、SPSS[M]. Beijing: Science Press, 2010. 徐向宏, 何明珠. 试验设计与Design-Expert、SPSS应用[M]. 北京:科学出版社, 2010.
    [15] Ni C Y, Zhang C D, Liu T T, et al. Deformation prediction of metal selective laser melting based on inherent strain method[J]. Chinese Journal of Lasers, 2018, 45(7): 0702004. 倪辰旖, 张长东, 刘婷婷. 基于固有应变法的激光选区熔化成形变形趋势预测[J]. 中国激光, 2018, 45(7): 0702004.
    [16] Liu J H, Zhu H H, Hu Z H, et al. Control of elevated edge in selective laser melt molding[J]. Chinese Journal of Lasers, 2017, 44(12): 1202007. 刘家赫, 朱海红, 胡志恒, 等. 激光选区熔化成形边缘堆高控制[J]. 中国激光, 2017, 44(12): 1202007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700