磷化钴@铁-锌双金属磷化物多级纳米复合物的制备及其电催化水分解性能(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Cobalt phosphide nanocage@ferric-zinc mixed-metal phosphide nanotube hierarchical nanocomposites for enhanced overall water splitting
  • 作者:胡晓炜 ; 尹永恒 ; 刘伟 ; 张兴旺 ; 张红秀
  • 英文作者:Xiaowei Hu;Yongheng Yin;Wei Liu;Xingwang Zhang;Hongxiu Zhang;Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, School of Chemistry and Chemical Engineering, Linyi University;Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University;
  • 关键词:多级结构 ; 磷化物 ; 电催化 ; CoP@ZnFeP ; 水分解
  • 英文关键词:Hierarchical structure;;Phosphide;;Electrocatalysis;;CoP@ZnFeP;;Water splitting
  • 中文刊名:CHUA
  • 英文刊名:Chinese Journal of Catalysis
  • 机构:临沂大学化学化工学院功能纳米材料与技术山东省高校重点实验室;浙江大学化学工程与生物工程学院生物质化工教育部重点实验室;
  • 出版日期:2019-05-29
  • 出版单位:催化学报
  • 年:2019
  • 期:v.40
  • 基金:supported by the Natural Science Foundation of Shandong Province(ZR2018BB061,ZR2018BB060,ZR2018LB004)~~
  • 语种:英文;
  • 页:CHUA201907011
  • 页数:12
  • CN:07
  • ISSN:21-1601/O6
  • 分类号:133-144
摘要
氢能源因其储量丰富、高效、零污染等特性而受到广泛关注.电解水产氢作为一种有效的获取氢能源的方式成为当前研究的重点.但由于电极表面反应过电势的存在极大增加了电解水的能耗,因此需要开发高效的电催化材料以提高电解水反应动力学.考虑到实际应用,设计和构筑在同一电解液中同时具有高效催化产氢和释氧能力的双功能催化材料更为重要且更具挑战.目前,越来越多的非贵金属基双功能催化材料被开发和报道,比如过渡金属硫化物、氧化物、层状双金属氢氧化物、碳化物、氮化物和磷化物等,其中又以磷化物的研究更为广泛.金属有机骨架化合物(MOFs)因其具有独特的性能(孔隙率高、超高比表面积、可调控的化学组分和孔道结构等)在能源转化等领域得到广泛应用.但是,基于MOFs材料转化的多组分过渡金属磷化物应用于全分解水体系的报道还比较少.先前的研究表明,优化催化材料的微纳结构和化学组成是提高材料催化性能的关键.我们利用三步法(晶体生长、自组装和磷化)设计并制备了一种基于MOFs转化的新型分级纳米复合材料CoP@ZnFeP.透射电子显微镜(TEM)结果显示,自组装形成的花状Co3O4@Fe-MOF-5中空结构在磷化后形貌能够很好地保持.X射线衍射(XRD)表明, CoP@ZnFeP纳米复合物是由大量的混合纳米晶体组成,主要包括Co2P, ZnP2和Fe2P.在碱性(1.0mol/L KOH)条件下, CoP@ZnFeP纳米复合物表现出优异的催化产氢(HER)和释氧(OER)性能,其释氢和产氧的启动电位分别为–50和148m V(vs.RHE),相应的Tafel斜率分别为76和53.9m V/decade.优异的电催化性能主要归功于复合材料的多级纳米结构组元(纳米粒子、纳米笼和纳米管),其有序的多孔结构和大的比表面积有利于电解液的渗透、气体的扩散和电子的转移.作为对比,我们利用相似方法制备了CoP和ZnFeP纳米粒子的机械混合物(CoP/ZnFeP).测试数据表明, CoP@ZnFeP分级复合材料的催化性能优于CoP/ZnFeP机械混合物.鉴于CoP@ZnFeP复合材料优异的催化性能,我们将其应用于全分解水体系.在两电极体系中,达到10m A/cm~2电流密度仅需1.6V电压,表明材料具有优异的全分解水性能.同时该复合物也显示出较好的稳定性,经过24h连续水解后,电解电位仅升高70m V.但同时我们也注意到电极表面剧烈产生的气泡会对电极材料的稳定性有严重影响.此项研究可为设计高效的非贵金属催化材料应用于能源转化和储存等领域提供较好的思路和借鉴.
        Hierarchical nanostructures have attracted widespread interest owing to their unique properties compared to their bulk counterparts. Thus, they are considered promising electrocatalytic materials. In this work, a novel hierarchical porous nanocomposite of cobalt phosphide nanocage@ferric-zinc mixed-metal phosphide nanotubes(denoted Co P@Zn Fe P) was fabricated using a self-assembly approach. Because of their structural and compositional merits, the as-prepared phosphide hybrids have abundant catalytic active sites and high porosity for facile mass diffusion. In an alkaline electrolyte, the CoP@ZnFeP flower-like hybrids displayed enhanced catalytic activity for the hydrogen evolution reaction and the oxygen evolution reaction compared with a mechanical mixture of Co P and Zn Fe P nanoparticles. The CoP@ZnFeP hierarchical nanocomposites also showed excellent activity for the overall water splitting reaction, yielding a water-splitting current of 10 mA/cm~2 on the application of just 1.6 V, as well as excellent durability(24-h long-term operation) in a two-electrode system. Our design methodology may create opportunities to search for highly efficient and robust non-precious metal catalysts with applications in high-performance energy conversion and storage devices.
引文
[1]S.Chu,A.Majumdar,Nature,2012,488,294-303.
    [2]J.Luo,J.H.Im,M.T.Mayer,M.Schreier,M.K.Nazeeruddin,N.G.Park,S.D.Tilley,H.J.Fan,M.Gr?tzel,Science,2014,345,1593-1596.
    [3]R.Li,Chin.J.Catal.,2017,38,5-12.
    [4]J.Chi,H.Yu,Chin.J.Catal.,2018,39,390-394.
    [5]K.Zeng,D.Zhang,Prog.Energy Combust.Sci.,2010,36,307-326.
    [6]M.Gong,D.Y.Wang,C.C.Chen,B.J.Hwang,H.Dai,Nano Res.,2016,9,28-46.
    [7]F.Song,L.Bai,A.Moysiadou,S.Lee,C.Hu,L.Liardet,X.Hu,J.Am.Chem.Soc.,2018,140,7748-7759.
    [8]S.Anantharaj,S.R.Ede,K.Sakthikumar,K.Karthick,S.Mishra,S.Kundu,ACS Catal.,2016,6,8069-8097.
    [9]Z.Xiao,Y.Wang,Y.C.Huang,Z.Wei,C.L.Dong,J.Ma,S.Shen,Y.Li,S.Wang,Energy Environ.Sci.,2017,10,2563-2569.
    [10]J.Liu,J.Wang,B.Zhang,Y.Ruan,L.Lv,X.Ji,K.Xu,L.Miao,J.Jiang,ACS Appl.Mater.Interfaces,2017,9,15364-15372.
    [11]Y.Yang,K.Zhang,H.Lin,X.Li,H.C.Chan,L.Yang,Q.Gao,ACSCatal.,2017,7,2357-2366.
    [12]X.Gao,H.Zhang,Q.Li,X.Yu,Z.Hong,X.Zhang,C.Liang,Z.Lin,Angew.Chem.Int.Ed.,2016,55,6290-6294.
    [13]Y.Jia,L.Zhang,G.Gao,H.Chen,B.Wang,J.Zhou,M.T.Soo,M.Hong,X.Yan,G.Qian,J.Zou,A.Du,X.Yao,Adv.Mater.,2017,29,1700017.
    [14]W.Liu,H.Liu,L.Dang,H.Zhang,X.Wu,B.Yang,Z.Li,X.Zhang,L.Lei,S.Jin,Adv.Funct.Mater.,2017,27,1603904.
    [15]D.Zhou,Z.Cai,X.Lei,W.Tian,Y.Bi,Y.Jia,N.Han,T.Gao,Q.Zhang,Y.Kuang,J.Pan,X.Sun,X.Duan,Adv.Energy Mater.,2018,8,1701905.
    [16]P.Li,X.Duan,Y.Kuang,Y.Li,G.Zhang,W.Liu,X.Sun,Adv.Energy Mater.,2018,8,1703341.
    [17]J.Jiang,Q.Liu,C.Zeng,L.Ai,J.Mater.Chem.A,2017,5,16929-16935.
    [18]Y.Wang,C.Xie,D.Liu,X.Huang,J.Huo,S.Wang,ACS Appl.Mater.Interfaces,2016,8,18652-18657.
    [19]N.Jiang,B.You,M.Sheng,Y.Sun,Angew.Chem.Int.Ed.,2015,54,6251-6254.
    [20]M.Liu,J.Li,ACS Appl.Mater.Interfaces,2016,8,2158-2165.
    [21]Y.Li,H.Zhang,M.Jiang,Q.Zhang,P.He,X.Sun,Adv.Funct.Mater.,2017,27,1702513.
    [22]F.Yu,H.Zhou,Y.Huang,J.Sun,F.Qin,J.Bao,W.A.Goddard III,S.Chen,Z.Ren,Nat.Commun.,2018,9,2551.
    [23]Z.Liu,Y.Wang,R.Chen,C.Chen,H.Yang,J.Ma,Y.Li,S.Wang,J.Power Sources,2018,403,90-96.
    [24]Y.Zheng,Y.Jiao,M.Jaroniec,Y.Jin,S.Z.Qiao,Small,2012,8,3550-3566.
    [25]S.L.James,Chem.Soc.Rev.,2003,32,276-288.
    [26]L.Tao,C.Y.Lin,S.Dou,S.Feng,D.Chen,D.Liu,J.Huo,Z.Xia,S.Wang,Nano Energy,2017,41,417-425.
    [27]H.Furukawa,K.E.Cordova,M.O’keeffe,O.M.Yaghi,Science,2013,341,1230444.
    [28]A.U.Czaja,N.Trukhan,U.Müller,Chem.Soc.Rev.,2009,38,1284-1293.
    [29]B.Yilmaz,N.Trukhan,U.Müller,Chin.J.Catal.,2012,33,3-10.
    [30]J.Lee,O.K.Farha,J.Roberts,K.A.Scheidt,S.T.Nguyen,J.T.Hupp,Chem.Soc.Rev.,2009,38,1450-1459.
    [31]W.Xia,A.Mahmood,R.Zou,Q.Xu,Energy Environ.Sci.,2015,8,1837-1866.
    [32]A.Corma,H.García,F.Llabrés I Xamena,Chem.Rev.,2010,110,4606-4655.
    [33]L.Hu,N.Yan,Q.Chen,P.Zhang,H.Zhong,X.Zheng,Y.Li,X.Hu,Chem.Eur.J.,2012,18,8971-8977.
    [34]X.W.Hu,S.Liu,B.T.Qu,X.Z.You,ACS Appl.Mater.Interfaces,2015,7,9972-9981.
    [35]K.M.Choi,H.M.Jeong,J.H.Park,Y.B.Zhang,J.K.Kang,O.M.Yaghi,ACS Nano,2014,8,7451-7457.
    [36]L.Wang,Y.Han,X.Feng,J.Zhou,P.Qi,B.Wang,Coord.Chem.Rev.,2016,307,361-381.
    [37]X.Liu,D.Wang,Y.Li,Nano Today,2012,7,448-466.
    [38]M.A.Boles,D.Ling,T.Hyeon,D.V.Talapin,Nat.Mater.,2016,15,141-153.
    [39]H.Hwang,M.G.Kim,Y.Kim,S.W.Martin,J.Cho,J.Mater.Chem.A,2007,17,3161-3166.
    [40]Y.Yuan,H.Pei,H.Chen,L.Zuo,J.Shen,Catal.Commun.,2017,100,202-205.
    [41]M.Zhang,H.Wang,Q.Li,J.Feng,Y.Chai,R.Yuan,X.Yang,Appl.Surf.Sci.,2018,453,56-62.
    [42]S.Liu,Y.Qian,X.Ma,Mater.Lett.,2008,62,11-14.
    [43]M.Chen,W.Zhou,M.Qi,J.Yin,X.Xia,Q.Chen,J.Power Sources,2017,342,964-969.
    [44]H.Zhang,B.Yang,X.Wu,Z.Li,L.Lei,X.Zhang,ACS Appl.Mater.Interfaces,2015,7,1772-1779.
    [45]J.F.Callejas,C.G.Read,E.J.Popczun,J.M.Mcenaney,R.E.Schaak,Chem.Mater.,2015,27,3769-3774.
    [46]L.Huang,R.Chen,C.Xie,C.Chen,Y.Wang,Y.Zeng,D.Chen,S.Wang,Nanoscale,2018,10,13638-13644.
    [47]K.H.Le Ho,L.Rivier,B.Jousselme,P.Jégou,A.Filoramo,S.Campidelli,Chem.Commun.,2010,46,8731-8733.
    [48]P.Jiang,Q.Liu,Y.Liang,J.Tian,A.M.Asiri,X.Sun,Angew.Chem.Int.Ed.,2014,53,12855-12859.
    [49]C.Y.Son,I.H.Kwak,Y.R.Lim,J.Park,Chem.Commun.,2016,52,2819-2822.
    [50]P.He,X.Y.Yu,X.W.D.Lou,Angew.Chem.Int.Ed.,2017,56,3897-3900.
    [51]C.M.Parlett,K.Wilson,A.F.Lee,Chem.Soc.Rev.,2013,42,3876-3893.
    [52]Y.Feng,X.Y.Yu,U.Paik,Chem.Commun.,2016,52,1633-1636.
    [53]X.Zou,Y.Zhang,Chem.Soc.Rev.,2015,44,5148-5180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700