基夫赛特熔炼过程中供氧方式的CFD模拟与优化(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:CFD modelling and optimization of oxygen supply mode in KIVCET smelting process
  • 作者:李家栋 ; 周萍 ; 廖舟 ; 柴立元 ; Chenn ; Q.ZHOU ; 张岭
  • 英文作者:Jia-dong LI;Ping ZHOU;Zhou LIAO;Li-yuan CHAI;Chenn Q.ZHOU;Ling ZHANG;School of Energy Science and Engineering, Central South University;Zhuzhou Smelter Group Company Limited;School of Metallurgy and Environment, Central South University;Center for Innovation through Visualization and Simulation,Purdue University Northwest;Changsha Nonferrous Metallurgy Design and Research Institute Company Limited;
  • 关键词:基夫赛特炉 ; 中央喷射分散喷嘴 ; 计算流体力学 ; 中央氧 ; 侧氧 ; 最优化
  • 英文关键词:KIVCET furnace;;central jet distributor (CJD) burner;;computational fluid dynamics (CFD);;central oxygen;;lateral oxygen;;optimization
  • 中文刊名:ZYSY
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:中南大学能源科学与工程学院;株洲冶炼集团股份有限公司;中南大学冶金与环境学院;Center for Innovation through Visualization and Simulation,Purdue University Northwest;长沙有色冶金设计研究院有限公司;
  • 出版日期:2019-07-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2019
  • 期:v.29
  • 基金:Project(61621062)supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China
  • 语种:英文;
  • 页:ZYSY201907022
  • 页数:9
  • CN:07
  • ISSN:43-1239/TG
  • 分类号:211-219
摘要
通过数值模拟研究供氧方式对基夫赛特熔炼过程的影响。以中央喷射分配喷嘴的中央氧与侧氧质量流量比表示供氧方式,模拟质量流量比在0.09~0.39范围内的基夫赛特炉熔炼过程。结果表明,4个中央喷射分配喷嘴下方区域为高效反应区。增大中央氧流量可以改善颗粒与气体的混合状况,从而促进化学反应的进行,同时会缩短高效反应区;但是,由于喷嘴下颗粒柱的分散会使烟尘率增加。对于熔炼能力为50000 kg/h的基夫赛特炉,其最优的供氧方式为质量流量比取0.31,在该工况下,炉料的化学反应可以充分进行,同时也保证较低的烟尘率。
        The influence of oxygen supply mode on the KIVCET(a Russian acronym for flash-cyclone-oxygen-electric-smelting) process was investigated using numerical simulation. The mass rate ratio(MRR) of central oxygen to lateral oxygen of the central jet distributor(CJD) burner was defined to express the oxygen supply mode, and the KIVCET process with an MRR ranging from 0.09 to 0.39 was simulated. The results show that there are four efficient reaction regions that correspond to four CJD burners. A higher central oxygen flow improves the mixing between particles and oxygen, thus enhancing reactions and shortening the reaction regions. However, a higher dust rate is induced due to the spread of the particle columns. The optimal MRR for a KIVCET furnace with a smelting capacity of 50000 kg/h is suggested to be 0.31. In this case, the chemical reactions associated with the feed are completed with an acceptable dust rate.
引文
[1] ZAHRANI E M, ALFANTAZI A M. Molten salt induced corrosion of Inconel 625 superalloy in Pb SO4-Pb3O4-Pb Cl2-Fe2O3-Zn O environment[J]. Corrosion Science, 2012, 65:340-359.
    [2] SLOVIKOVSKII V V, GULYAEVA A V. Effective linings for KIVCET furnaces[J]. Refractories and Industrial Ceramics, 2014,54(5):350-352.
    [3] GREGUREK D, REINHARTER K, MAJCENOVIC C, WENZL C,SPANRING A. Overview of wear phenomena in lead processing furnaces[J]. Journal of the European Ceramic Society, 2015, 35(6):1683-1698.
    [4] ZHOU Jun, ZHOU Jie-min, CHEN Zhuo, MAO Yong-ning.Influence analysis of air flow momentum on concentrate dispersion and combustion in copper flash smelting furnace by CFD simulation[J]. JOM, 2014, 66(9):1629-1637.
    [5] MEI Chi, PENG Xiao-qi, ZHOU Ping, ZHOU Jie-min, ZHOU Nai-jun. Simulation and optimization of furnaces and kilns for nonferrous metallurgical engineering[M]. Berlin:Springer-Verlag,2010.
    [6] HIGGINS D R, GRAY N B, DAVIDSON M R. Simulating particle agglomeration in the flash smelting reaction shaft[J]. Minerals Engineering, 2009, 22(14):1251-1265.
    [7] CHEN Hong-rong, MEI Chi, XIE Kai, LI Xing-fen, ZHOU Jun,WANG Xiao-hua, GE Ze-ling. Operation optimization of concentrate burner in copper flash smelting furnace[J]. Transactions of Nonferrous Metals Society of China, 2004, 14(3):631-636.
    [8] WANG Qin-meng, GUO Xue-yi, WANG Song-song, LIAO Li-le,TIAN Qing-hua. Multiphase equilibrium modelling of oxygen bottom-blown copper smelting process[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(11):2503-2511.
    [9] WANG Qin-meng, GUO Xue-yi, TIAN Qing-hua. Copper smelting mechanism in oxygen bottom-blown furnace[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(4):946-953.
    [10] KOH P T L, JORGENSEN F R A, ELLIOT B J. Solids falling in flash furnace burner concentrate chutes[J]. International Journal of Mineral Processing, 2007, 83(3-4):81-88.
    [11]?UTALO I D, JORGENSEN F R A, GRAY N B. Experimental and mathematical investigation of the fluid flow inside and below a 1/4scale air model of a flash smelting burner[J]. Metallurgical and Materials Transactions B, 1998, 29(5):993-1006.
    [12] ZHOU Jun, CHEN Zhuo, ZHOU Ping, YU Jian-ping, LIU Ai-ming.Numerical simulation of flow characteristics in settler of flash furnace[J]. Transactions of Nonferrous Metals Society of China,2012, 22(6):1517-1525.
    [13] SOLNORDAL C B, JORGENSEN F R A, KOH P T L, HUNT A.CFD modelling of the flow and reactions in the Olympic Dam flash furnace smelter reaction shaft[J]. Applied Mathematical Modelling,2006, 30(11):1310-1325.
    [14] NIJDAM J J, LANGRISH T A G, FLETCHER D F. Assessment of an eulerian CFD model for prediction of dilute droplet dispersion in a turbulent jet[J]. Applied Mathematical Modelling, 2008, 32(12):2686-2705.
    [15] KOJO I, STORCH H. Copper production with Outokumpu flash smelting:an update[C]//KONGOLI F, REDDY R G. Sohn international symposium:Advanced processing of metals and materials. volume 8-International symposium on sulfide smelting.Warrendale, PA:The Minerals, Metals&Materials Society, 2006:225-238.
    [16] MELCHER D L G, MULLER D L E, WEIGEL D L H. The KIVCET cyclone smelting process for impure copper concentrates[J]. JOM,1976, 28(7):4-8.
    [17] LAKSHMANAN V I, RAMACHANDRAN R. Innovative case study processes in extractive metallurgy[M]. Cham:Springer International Publishing, 2016.
    [18] MALINOWSKI C, MALINOWSKA K, MA?ECKI S. Analysis of the chemical processes occurring in the system Pb SO4-Zn S[J].Thermochimica Acta, 1996, 275(1):117-130.
    [19] ZHANG Le-ru. Modern lead metallurgy[M]. Changsha:Central South University Press, 2013.(in Chinese)
    [20] LATEB M, MASSON C, STATHOPOULOS T, BéDARD C.Comparison of various types of k-εmodels for pollutant emissions around a two-building configuration[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 115:9-21.
    [21] LI Yan-chun, LIU Zhi-lou, LIU Hui, PENG Bing. Clean strengthening reduction of lead and zinc from smelting waste slag by iron oxide[J]. Journal of Cleaner Production, 2017, 143:311-318.
    [22] BAI Lu, XIE Ming-hui, ZHANG Yue, QIAO Qi. Pollution prevention and control measures for the bottom blowing furnace of a lead-smelting process, based on a mathematical model and simulation[J]. Journal of Cleaner Production, 2017, 159:432-445.
    [23] WANG Jin-liang, WEN Xiao-chun, ZHANG Chuan-fu.Thermodynamic model of lead oxide activity in Pb O-Ca O-Si O2-Fe O-Fe2O3 slag system[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(5):1633-1639.
    [24] HALOUANE Y, DEHBI A. CFD simulations of premixed hydrogen combustion using the eddy dissipation and the turbulent flame closure models[J]. International Journal of Hydrogen Energy, 2017,42(34):21990-22004.
    [25] YANG Xin, CLEMENTS A, SZUHáNSZKI J, HUANG Xiao-hong,FARIAS MOGUEL O, LI Jia, GIBBINS J, LIU Zhao-hui, ZHENG Chu-guang, INGHAM D, MA Lin, NIMMO B, POURKASHANIAN M. Prediction of the radiative heat transfer in small and large scale oxy-coal furnaces[J]. Applied Energy, 2018, 211:523-537.
    [26] CHENG Ping. Two-dimensional radiating gas flow by a moment method[J]. AIAA Journal, 1964, 2:1662-1664.
    [27] RANZ W E, MARSHALL W R. Evaporation from drops:Part I[J].Chemical Engineering Progress, 1952, 48:141-146.
    [28] RANZ W E, MARSHALL W R. Evaporation from drops:Part II[J].Chemical Engineering Progress, 1952, 48:173-180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700