铀污染控制技术与还原态UO_2(s)稳定性研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress review on uranium pollution control technology and stability of reduced UO_2( s)
  • 作者:成先雄 ; 胡民火 ; 连军锋 ; 孔张亮 ; 张鹏 ; 陈于梁
  • 英文作者:CHENG Xian-xiong;HU Min-huo;LIAN Jun-feng;KONG Zhang-liang;ZHANG Peng;CHENG Yu-liang;School of Architectural and Surveying & Mapping Engineering,Jiangxi University of Science and Technology;
  • 关键词:环境学 ; 铀污染 ; 控制技术 ; 还原固定 ; 稳定性
  • 英文关键词:environmentalology;;uranium pollution;;control technology;;reduction fixation;;stability
  • 中文刊名:AQHJ
  • 英文刊名:Journal of Safety and Environment
  • 机构:江西理工大学建筑与测绘工程学院;
  • 出版日期:2019-06-25
  • 出版单位:安全与环境学报
  • 年:2019
  • 期:v.19;No.111
  • 基金:国家自然科学基金青年科学基金项目(51808268)
  • 语种:中文;
  • 页:AQHJ201903041
  • 页数:12
  • CN:03
  • ISSN:11-4537/X
  • 分类号:294-305
摘要
铀U(Ⅵ)由于核裂变反应已被广泛用于核能利用和核武器开发,但铀矿开采与冶炼过程中,会向环境中释放一定量的铀。铀元素由于自身具有放射性危害和重金属毒性,因此,会引起一系列生态安全问题。为了实现铀污染控制与维持还原态UO_2稳定性,在铀分离、还原等污染控制技术评述的基础上,着重阐述U(Ⅵ)被还原固定形成UO_2(s)的稳定性及稳定性维持方法,并对铀污染治理进行了展望。
        This paper aims to review the uranium pollution control technology,including U( Ⅵ) removal based on the adsorption,membrane separation,and the ion exchange. As a matter of fact,a certain amount of uranium used to be released into the environment during the process of uranium mining and/or smelting. Actually,it is often the case that radiological hazards and heavy metal toxicity of the uranium are likely to cause a series of ecological security problems,in addition to the uranium removal by means of separation technology. All this has made the uranium reduction technology ever increasingly important. In view of what is said above,the present paper intends to collect and synthesize the related research results in terms of ways and methods on the reduction of U( Ⅵ) to the dissolution of UO_2( s) precipitates,such as the original uranium material radiation reduction,the photocatalytic reduction,the electrochemical reduction and the microbial reduction. In recent years,some U. S. uranium pollution repair or amending works have been given up because the reduced UO_2( s) is easily oxidized by the oxidizing substances in the environment. In order to maintain the stability of UO_2( s) caused by the influence of O_2,NO-3,the iron oxides,manganese compounds and iron-bearing clay minerals in the environment,the paper would like to make a stressed discussion of the 2 ways of externally adding carbon source as electron donor to meet the microbial metabolism and adding the reducing agent to alleviate the oxidation state to maintain the UO_2( s) stability.Even though there exist a few strategies for reducing the uranium pollution control and maintaining the stability of UO_2( s),most of research results have not been fully adopted in the engineering practice. Thus,in summary,the paper just starts from the uranium pollution control technology and summarizes the stability of the reduced product UO_2( s) and the maintenance of UO_2( s)stability comprehensively. And,in such a way,can the paper present merely an outline on the prospect of the uranium pollution control. That is,first of all,the key point of the future research is to realize the uranium pollution control by using the joint technology. And,secondly,the realization of uranium-contamination reduction can only be accelerated by the in-situ bioreduction remediation from the 2 perspectives,that is,uranium inhibition and reduction. Thirdly,starting from the source of microbial consumption of the carbon sources,that is to say,the supply of carbon sources has to be reduced. All the above said indicates that it could achieve quick and efficient removal of uranium and maintain the stability of UO_2( s) mainly by looking for more sorts of substance reduction to consume the oxidizing substances.
引文
[1] WU Weimin(吴唯民),CARLEY J M,WATSON D B,et al. Bioreduction and immobilization of uranium in situ:a case study at a USA department of energy radioactive waste site,Oak Ridge,Tennessee[J]. Acta Scientiae Circumstantiae(环境科学学报),2011,31(3):449-459.
    [2] SAMOLCZYK M A,SPOONER I S,STANLEY C R. A model for uranium mobility in groundwater in the Grand Préregion,Nova Scotia,Canada[J]. Atlantic Geology,2012,48:1-13.
    [3] BAIK M H,JUNG E C,JEONG J. Determination of uranium concentration and speciation in natural granitic groundwater using TRLFS[J]. Journal of Radioanalytical&Nuclear Chemistry,2015,305(2):1-10.
    [4] KUMAR A,USHA N,SAWANT P D,et al. Risk assessment for natural uranium in subsurface water of punjab state,India[J]. Human&Ecological Risk Assessment An International Journal,2011,17(2):381-393.
    [5] YANG Q,SMITHERMAN P,HESS C T,et al. Uranium and radon in private bedrock well water in Maine:geospatial analysis at two scales[J]. Environmental Science&Technology,2014,48(8):4298-4306.
    [6] PRAT O,VERCOUTER T,ANSOBORLO E,et al. Uranium speciation in drinking water from drilled wells in southern finland and its potential links to health effects[J]. Environmental Science&Technology,2009,43(10):3941-3946.
    [7] FRENGSTAD B,SKREDE A K M,BANKS D,et al.The chemistry of Norwegian groundwaters:III. The distribution of trace elements in 476 crystalline bedrock groundwaters,as analysed by ICP-MS techniques[J]. Science of the Total Environment,2000,246(1):21-40.
    [8] KATSOYIANNIS I A,HUG S J,AMMANN A,et al. Arsenic speciation and uranium concentrations in drinking water supply wells in Northern Greece:correlations with redox indicative parameters and implications for groundwater treatment[J]. Science of the Total Environment,2007,383(1/2/3):128-140.
    [9] GUO H,JIA Y,WANTY R B,et al. Contrasting distributions of groundwater arsenic and uranium in the western Hetao basin,Inner Mongolia:implication for origins and fate controls[J]. Science of the Total Environment,2016,541:1172-1190.
    [10] WU Y,WANG Y,XIE X. Occurrence,behavior and distribution of high levels of uranium in shallow groundwater at Datong basin,northern China[J]. Science of the Total Environment,2014,472:809-817.
    [11] DAI S,XIE P,JIA S,et al. Enrichment of U-Re-V-CrSe and rare earth elements in the Late Permian coals of the Moxinpo Coalfield,Chongqing,China:genetic implications from geochemical and mineralogical data[J].Ore Geology Reviews,2017,80:1-17.
    [12] DAI S,XIE P,WARD C R,et al. Anomalies of rare metals in Lopingian super-high-organic-sulfur coals from the Yishan Coalfield,Guangxi,China[J]. Ore Geology Reviews,2017,88:235-250.
    [13] DAI S,WANG P,WARD C R,et al. Elemental and mineralogical anomalies in the coal-hosted Ge ore deposit of Lincang,Yunnan,southwestern China:key role of N2-CO2-mixed hydrothermal solutions[J]. International Journal of Coal Geology,2015,152:19-46.
    [14] LAUER N,VENGOSH A,DAI S. Naturally occurring radioactive materials in uranium-rich coals and associated coal combustion residues from China[J]. Environmental Science&Technology, 2017, 51,13487-13493.
    [15] LOVLEY D R,PHILLIPS E J P,GORBY Y A,et al.Microbial reduction of uranium[J]. Nature,1991,350(6317):413-416.
    [16] SUN Zhanxue(孙占学),LIU Yuanyuan(刘媛媛),MA Wenjie(马文洁),et al. Research progress on groundwater and ecological security in uranium mining area[J].Geoscience Frontiers(地学前缘), 2014, 21(4):158-167.
    [17] KUMAR S,LOGANATHAN V A,GUPTA R B,et al. An assessment of U(VI)removal from groundwater using biochar produced from hydrothermal carbonization[J]. Journal of Environmental Management,2011,92(10):2504-2512.
    [18] LI M,LIU H,CHEN T,et al. Synthesis of magnetic biochar composites for enhanced uranium(VI)adsorption[J]. Science of the Total Environment,2019,651:1020-1028.
    [19] MISHRA S,DWIVEDI J,KUMAR A,et al. The synthesis and characterization of tributyl phosphate grafted carbon nanotubes by the floating catalytic chemical vapor deposition method and their sorption behavior towards uranium[J]. New Journal of Chemistry,2016,40(2):1213-1221.
    [20] KüTAHYAL C,ERAL M. Sorption studies of uranium and thorium on activated carbon prepared from olive stones:kinetic and thermodynamic aspects[J]. Journal of Nuclear Materials,2010,396(2/3):251-256.
    [21] SUN Y,YANG S,CHEN Y,et al. Adsorption and desorption of U(VI)on functionalized graphene oxides:a combined experimental and theoretical study[J]. Environmental Science&Technology,2015,49(7):4255-4262.
    [22] ZENG H,SINGH A,BASAK S,et al. Nanoscale size effects on uranium(VI)adsorption to hematite[J]. Environmental Science&Technology,2009,43(5):1373-1378.
    [23] PAN Z,LI W,FORTNER J D,et al. Measurement and surface complexation modeling of U(VI)adsorption to engineered iron oxide nanoparticles[J]. Environmental Science&Technology,2017,51:9219-9226.
    [24] SINGER D M,CHATMAN S M,ILTON E S,et al.Identification of simultaneous U(VI)sorption complexes and U(IV)nanoprecipitates on the magnetite(111)surface[J]. Environmental Science&Technology,2012,46(7):3811-3820.
    [25] WAZNE M,KORFIATIS G P,MENG X. Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide[J]. Environmental Science&Technology,2003,37(16):3619-3624.
    [26] GUO Z,LI Y,WU W. Sorption of U(VI)on goethite:effects of p H,ionic strength,phosphate,carbonate and fulvic acid[J]. Applied Radiation and Isotopes,2009,67(6):996-1000.
    [27] KOWAL-FOUCHARD A,DROT R,SIMONI E,et al.Use of spectroscopic techniques for uranium(VI)/montmorillonite interaction modeling[J]. Environmental Science&Technology,2004,38(5):1399-1407.
    [28] XIAO J,CHEN Y,ZHAO W,et al. Sorption behavior of U(VI)onto Chinese bentonite:effect of p H,ionic strength,temperature and humic acid[J]. Journal of Molecular Liquids,2013,188(12):178-185.
    [29] DING C,CHENG W,JIN Z,et al. Plasma synthesis of beta-cyclodextrin/Al(OH)3composites as adsorbents for removal of UO22+from aqueous solutions[J]. Journal of Molecular Liquids,2015,207:224-230.
    [30] SUN Y,DING C,CHENG W,et al. Simultaneous adsorption and reduction of U(VI)on reduced graphene oxide-supported nanoscale zerovalent iron[J]. Journal of Hazardous Materials,2014,280:399-408.
    [31] LIU H,LI M,CHEN T,et al. New synthesis of n ZVI/C composites as an efficient adsorbent for the uptake of U(VI)from aqueous solutions[J]. Environmental Science&Technology,2017,51:9227-9234.
    [32] FAVRE-RéGUILLON A,LEBUZIT G,MURAT D,et al. Selective removal of dissolved uranium in drinking water by nanofiltration[J]. Water Research,2008,42(4/5):1160-1166.
    [33] SCHULTE-HERBRüGGEN H M A,SEMI?O A J C,CHAURAND P,et al. Effect of p H and pressure on uranium removal from drinking water using NF/RO membranes[J]. Environmental Science&Technology,2016,50(11):5817-5824.
    [34] ZAHAKIFAR F,CHARKHI A,TORAB-MOSTAEDI M,et al. Performance evaluation of hollow fiber renewal liquid membrane for extraction of uranium(VI)from acidic sulfate solution[J]. Radiochimica Acta,2018,106(3):181-189.
    [35] KULKARNI S S,JUVEKAR V A,MUKHOPADHYAY S. Intensification of emulsion liquid membrane extraction of uranium(VI)by replacing nitric acid with sodium nitrate solution[J]. Chemical Engineering and Processing:Process Intensification,2018,125:18-26.
    [36] ZHANG Youxian(张有贤),MA Weidong(马卫东).Treatment of trace radioactive raw water in a mining area[J]. China Water&Wastewater(中国给水排水),2002(5):72-73.
    [37] AMPHLETT J T M,OGDEN M D,FOSTER R I,et al.Polyamine functionalised ion exchange resins:synthesis,characterisation and uranyl uptake[J]. Chemical Engineering Journal,2018,334:1361-1370.
    [38] AMPHLETT J T M,OGDEN M D,FOSTER R I,et al.The effect of contaminants on the application of polyamine functionalised ion exchange resins for uranium extraction from sulfate based mining process waters[J].Chemical Engineering Journal,2018,354:633-640.
    [39] BANERJEE C,DUDWADKAR N,TRIPATHI S C,et al. Nano-cerium vanadate:a novel inorganic ion exchanger for removal of Americium and uranium from simulated aqueous nuclear waste[J]. Journal of Hazardous Materials,2014,280:63-70.
    [40] MANOS M J,KANATZIDIS M G. Layered metal sulfides capture uranium from seawater[J]. Journal of the American Chemical Society, 2012, 134(39):16441-16446.
    [41] WANG Xiaogang(万小岗),WANG Dongwen(王东文). Experimental study on treatment of uranium-containing wastewater by potassium tetratitanate whisker[J].Environmental Science&Technology(环境科学与技术),2007,30(10):67-70.
    [42] JANG J,KIM T J,EUN H C,et al. Uranium recovery with zinc distillation from a liquid zinc cathode for pyroprocessing[J]. Journal of Radioanalytical and Nuclear Chemistry,2018,316(2):649-654.
    [43] KIM G Y,SHIN J,KIM S H,et al. Recovery of uranium using electrorefining with an anode-liquid cathode module(ALCM)in molten Li Cl-KCl-UCl-NdCl and cadmium distillation[J]. Journal of Radioanalytical&Nuclear Chemistry,2016,307(2):1551-1557.
    [44] LI J,ZHANG L,PENG J,et al. Removal of uranium from uranium plant wastewater using zero-valent iron in an ultrasonic field[J]. Nuclear Engineering&Technology,2016,48(3):744-750.
    [45] SIHN Y,BAE S,LEE W. Immobilization of uranium(VI)in a cementitious matrix with nanoscale zerovalent iron(NZVI)[J]. Chemosphere,2019,215:626-633.
    [46] HUA Y,WANG W,HUANG X,et al. Effect of bicarbonate on aging and reactivity of nanoscale zerovalent iron(n ZVI)toward uranium removal[J]. Chemosphere,2018,201:603-611.
    [47] YAN S,BOYANOV M I,MISHRA B,et al. U(VI)reduction by biogenic and abiotic hydroxycarbonate green rusts:impacts on U(IV)speciation and stability over time[J]. Environmental Science&Technology,2018,52:4601-4609.
    [48] ILTON E S,PACHECO J S L,BARGAR J R,et al.Reduction of U(VI)incorporated in the structure of hematite[J]. Environmental Science&Technology,2012,46(17):9428-9436.
    [49] ILTON E S,BOILY J F,BUCK E C,et al. Influence of dynamical conditions on the reduction of U(VI)at the magnetite-solution interface[J]. Environmental Science&Technology,2009,44(1):170-176.
    [50] BOLAND D D,COLLINS R N,GLOVER C J,et al.Reduction of U(VI)by Fe(II)during the Fe(II)-accelerated transformation of ferrihydrite[J]. Environmental Science&Technology,2014,48(16):9086-9093.
    [51] VEERAMANI H,SCHEINOST A C,MONSEGUE N,et al. Abiotic reductive immobilization of U(VI)by biogenic mackinawite[J]. Environmental Science&Technology,2013,47(5):2361-2369.
    [52] DU X,BOONCHAYAANANT B,WU W M,et al.Reduction of uranium(VI)by soluble iron(II)conforms with thermodynamic predictions[J]. Environmental Science&Technology,2011,45(11):4718-4725.
    [53] SALOMONE V N,MEICHTRY J M,LITTER M I.Heterogeneous photocatalytic removal of U(VI)in the presence of formic acid:U(III)formation[J]. Chemical Engineering Journal,2015,270:28-35.
    [54] LUO Zhaopei(罗昭培),DONG Faqing(董发勤),HE Huichao(何辉超),et al. Photocatalytic reduction of U(VI)by P25 semiconductor minerals[J]. Journal of Nuclear and Radiochemistry(核化学与放射化学),2017,39(1):30-35.
    [55] LU C,CHEN R,WU X,et al. Boron doped g-C3N4with enhanced photocatalytic UO22+reduction performance[J]. Applied Surface Science, 2016, 360:1016-1022.
    [56] LU C,ZHANG P,JIANG S,et al. Photocatalytic reduction elimination of UO22+pollutant under visible light with metal-free sulfur doped g-C3N4photocatalyst[J].Applied Catalysis B:Environmental, 2017, 200:378-385.
    [57] ZHONG Meirong(宗美荣),HE Huichao(何辉超),DONG Faqing(董发勤),et al. Electrochemical electron transfer and crystallization of U(VI)in sodium salt solution[J]. Chemical Journal of Chinese Universities(高等学校化学学报),2016,37(9):1701-1709.
    [58] WANG Yue(王悦),LIU Yupeng(刘玉鹏),WANG Xiangyun(王祥云),et al. Electrochemical and spectroscopic properties of uranium(VI)and trioctylphosphine oxide complexes in ionic liquids[J]. Journal of Nuclear and Radiochemistry(核化学与放射化学),2013,35(5):263-269.
    [59] ZHANG Qiuyue(张秋月),WANG Xiaohong(王小红),TANG Hongbin(唐洪彬),et al. Electrochemical properties of uranium(VI)in 1-butyl-3-methylimidazolium chloride[J]. Journal of Nuclear and Radiochemistry(核化学与放射化学),2011,33(2):101-105.
    [60] SHARMA M K,AGGARWAL S K. Electrochemical reduction of U(VI)in H2SO4at gold nanoporous film electrode[J]. Radiochimica Acta International Journal for Chemical Aspects of Nuclear Science and Technology,2013,101(4):253-258.
    [61] GREGORY K B,LOVLEY D R. Remediation and recovery of uranium from contaminated subsurface environments with electrodes[J]. Environmental Science&Technology,2005,39(22):8943-8947.
    [62] SHOLL D S,LIVELY R P. Seven chemical separations:to change the world:purifying mixtures without using heat would lower global energy use,emissions and pollution-and open up new routes to resources[J]. Nature,2016,532(7600):435-438.
    [63] LIU C,HSU P C,XIE J,et al. A half-wave rectified alternating current electrochemical method for uranium extraction from seawater[J]. Nature Energy,2017,2(4):1-8.
    [64] SENKO J M,ISTOK J D,SUFLITA J M,et al. In-situ evidence for uranium immobilization and remobilization[J]. Environmental Science&Technology,2002,36(7):1491-1496.
    [65] ANDERSON R T,VRIONIS H A,ORTIZ-BERNAD I,et al. Stimulating the in situ activity of geobacter species to remove uranium from the groundwater of a uraniumcontaminated aquifer[J]. Applied and Environmental Microbiology,2003,69(10):5884-5891.
    [66] BROOKS S C,FREDRICKSON J K,CARROLL S L,et al. Inhibition of bacterial U(VI)reduction by calcium[J]. Environmental Science&Technology,2003,37(9):1850-1858.
    [67] SHENG L,FEIN J B. Uranium reduction by shewanella oneidensis MR-1 as a function of Na HCO3concentration:surface complexation control of reduction kinetics[J].Environmental Science&Technology,2014,48(7):3768-3775.
    [68] STEWART B D,AMOS R T,NICO P S,et al. Influence of uranyl speciation and iron oxides on uranium biogeochemical redox reactions[J]. Geomicrobiology Journal,2011,28(5/6):444-456.
    [69] WANG Yonghua(王永华),XIE Shuibo(谢水波),LIU Jinxiang(刘金香),et al. Characteristics and influencing factors of U(VI)reducing by shewanella oneidensis strain MR-1(MR-1)[J]. China Environmental Science(中国环境科学),2014,34(11):2942-2949.
    [70] GU B,YAN H,ZHOU P,et al. Natural humics impact uranium bioreduction and oxidation[J]. Environmental Science&Technology, 2005, 39(14):5268-5275.
    [71] WU W M,CARLEY J,LUO J,et al. In situ bioreduction of uranium(VI)to submicromolar levels and reoxidation by dissolved oxygen[J]. Environmental Science&Technology,2007,41(16):5716-5723.
    [72] FINNERAN K T,HOUSEWRIGHT M E,LOVLEY D R. Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments[J]. Environmental Microbiology,2010,4(9):510-516.
    [73] MOON H S,KOMLOS J,JAFFéP R. Uranium reoxidation in previously bioreduced sediment by dissolved oxygen and nitrate[J]. Environmental Science&Technology,2007,41(13):4587-4592.
    [74] GINDER-VOGEL M,CRIDDLE C S,FENDORF S.Thermodynamic constraints on the oxidation of biogenic UO2by Fe(III)(hydr)oxides[J]. Environmental Science&Technology,2006,40(11):3544-3550.
    [75] GINDER-VOGEL M,STEWART B,FENDORF S. Kinetic and mechanistic constraints on the oxidation of biogenic uraninite by ferrihydrite[J]. Environmental Science&Technology,2009,44(1):163-169.
    [76] LIU C,ZACHARA J M,FREDRICKSON J K,et al.Modeling the inhibition of the bacterial reduction of U(VI)byβ-MnO2(s)[J]. Environmental Science&Technology,2002,36(7):1452-1459.
    [77] FREDRICKSON J K,ZACHARA J M,KENNEDY D W,et al. Influence of Mn oxides on the reduction of U(VI)by the metal-reducing bacterium Shewanella putrefaciens[J]. Geochimica et Cosmochimica Acta,2002,66(18):3247-3262.
    [78] CHINNI S,ANDERSON C R,ULRICH K U,et al.Indirect UO2oxidation by Mn(II)-oxidizing spores of Bacillus sp. strain SG-1 and the effect of U and Mn concentrations[J]. Environmental Science&Technology,2008,42(23):8709-8714.
    [79] WANG Z,TEBO B M,GIAMMAR D E. Effects of Mn(II)on UO2dissolution under anoxic and oxic conditions[J]. Environmental Science&Technology,2014,48(10):5546-5554.
    [80] WANG Z,XIONG W,TEBO B M,et al. Oxidative UO2dissolution induced by soluble Mn(III)[J]. Environmental Science&Technology, 2014, 48(1):289-298.
    [81] LUAN F,BURGOS W D. Sequential extraction method for determination of Fe(II/III)and U(IV/VI)in suspensions of iron-bearing phyllosilicates and uranium[J].Environmental Science&Technology,2012,46(21):11995-12002.
    [82] LIU Y,LUAN F,BURGOS W D. Redox-driven dissolution of clay minerals by uranium under high pressure CO2conditions[J]. Chemical Geology,2014,383:100-106.
    [83] LUAN F,GORSKI C A,BURGOS W D. Thermodynamic controls on the microbial reduction of iron-bearing nontronite and uranium[J]. Environmental Science&Technology,2014,48(5):2750-2758.
    [84] ISTOK J D,SENKO J M,KRUMHOLZ L R,et al. In situ bioreduction of technetium and uranium in a nitratecontaminated aquifer[J]. Environmental Science&Technology,2004,38(2):468-475.
    [85] LUAN F,ZHANG G,SENKO J M,et al. Effects of supplemental organic carbon on long-term reduction and reoxidation of uranium[J]. RSC Advances,2015,5(41):32210-32216.
    [86] BI Y,HAYES K F. Nano-FeS inhibits UO2reoxidation under varied oxic conditions[J]. Environmental Science&Technology,2014,48(1):632-640.
    [87] CARPENTER J,BI Y,HAYES K F. Influence of iron sulfides on abiotic oxidation of UO2by nitrite and dissolved oxygen in natural sediments[J]. Environmental Science&Technology,2015,49(2):1078-1085.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700