纳米TiO_2对菲律宾蛤仔消化腺中Cd的蓄积与生化响应的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of TiO_2 Nanoparticles on Cd Accumulation and Biochemical Responses in Digestive Gland of Ruditapes philippinarum
  • 作者:张博 ; 潘进芬 ; 张雪娇 ; 张婷婉 ; 王竹梅
  • 英文作者:ZHANG Bo;PAN Jin-Fen;ZHANG Xue-Jiao;ZHANG Ting-Wan;WANG Zhu-Mei;College of Environmental Science and Engineering, Ocean University of China;Key Laboratory of Marine Environment and Ecology,Ministry of Education,Ocean University of China;
  • 关键词:菲律宾蛤仔 ; 纳米二氧化钛 ; ; 生物蓄积 ; 生物标志物
  • 英文关键词:Ruditapes philippinarum;;n-TiO_2;;cadmium;;bioaccumulation;;biomarkers
  • 中文刊名:QDHY
  • 英文刊名:Periodical of Ocean University of China
  • 机构:中国海洋大学环境科学与工程学院;中国海洋大学海洋环境与生态教育部重点实验室;
  • 出版日期:2019-06-20
  • 出版单位:中国海洋大学学报(自然科学版)
  • 年:2019
  • 期:v.49;No.297
  • 基金:海洋公益性行业科研专项(201505034)资助~~
  • 语种:中文;
  • 页:QDHY201908005
  • 页数:8
  • CN:08
  • ISSN:37-1414/P
  • 分类号:40-47
摘要
随着纳米科技的发展及纳米颗粒在纺织、食品、太阳能及水处理等各行业的应用,进入水生环境的纳米颗粒对其中痕量金属的生物地球化学循环及其生物学效应的影响受到关注。本文研究了水环境中分布最广泛的纳米二氧化钛(n-TiO_2)对镉(100μg·L~(-1))在海洋双壳类菲律宾蛤仔体内生物利用性及生物效应的影响,通过14 d的暴露实验,在环境真实浓度下研究Cd在蛤仔体内的蓄积量及毒性。暴露期间测定了蛤仔消化腺中超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽S-转移酶(GST)、丙二醛(MDA)和金属硫蛋白(MT)等生物标志物的活性或含量,同时分析了消化腺中Cd的蓄积。暴露3 d后,Cd处理组及n-TiO_2+Cd处理组均观测到蛤仔消化腺内Cd含量显著升高(p<0.05),并随时间延长而不断升高。各处理组SOD活性在整个暴露周期内与同期对照组相比均无显著差异。CAT(3 d)和GST(7、14 d)活性仅在Cd处理组出现显著升高(p<0.05)。Cd处理组在暴露结束时出现MDA含量的显著增加;n-TiO_2单独及联合处理组MDA含量显著上升出现在7 d后,至暴露结束时与对照组无显著差异。随暴露时间的延长,只有Cd处理组中蛤仔消化腺MT的含量呈现显著升高。结果表明,相同浓度条件下,Cd对蛤仔的亚致死毒性高于n-TiO_2,而n-TiO_2能够通过抑制Cd的生物积累而减轻后者对蛤仔的毒性,这种影响与n-TiO_2对Cd的吸附作用有关。
        With the development of nanotechnology and the application of nanoparticles in various industries such as textiles, foods, solar energy and water treatments, the influence of nanoparticles entering the aquatic environment on the biogeochemical circulation of trace metals and their biological effects has attracted widespread interest. In this work, the role of n-TiO_2(one of the most widespread NPs in aquatic environment) on Cd bioavailability and biological effects of the marine bivalve Ruditapes philippinarum was evaluated. Experimental conditions(100 μg·L~(-1), 14 d), were chosen in order to be closer to the predicted environmental concentration. Several celluar biomarkers were investigated in digestive glands: SOD, CAT, GST, MDA and MT levels. Accumulation of Cd in digestive glands was also investigated. The Cd contents in the digestive gland of R. philippinarum increased significantly(p < 0.05) in Cd group and n-TiO_2+Cd group after exposure for 3 days, and increased with time. There were no significant differences in SOD activity in all treatment groups over the whole exposure period when compared with the control at the same time. Cd induced significant increases(p < 0.05) in CAT(after 3 days of exposure) and GST(after 7 and 14 days of exposure) activities, whereas no changes were observed with n-TiO_2 alone and the mixture during the exposure days. MDA levels in Cd treatment group increased significantly at the last day of the bioassay. However, significant increases in MDA levels were observed in clams exposed to n-TiO_2 alone and the mixture at 7 day, then decrease for values similar to the control at the 14 day. Only the Cd treatment group could significantly induce the synthesis of MT in the digestive glands, and increased with time. The results showed that the sublethal toxicity of Cd to clams was higher than that of n-TiO_2 at the same concentrations. And n-TiO_2 can reduce the toxicity of Cd to clams by inhibiting the bioaccumulation of Cd, which is related to the adsorption of Cd by n-TiO_2.
引文
[1] Mueller N C,Nowack B.Exposure modeling of engineered nanoparticles in the environment[J].Environmental Science and Technology,2008,42(12):4447-4453.
    [2] Tiede K,Westerhoff P,Hansen S F,et al.Review of the Risks Posed to Drinking Water by Man-Made Nanoparticles[R].Sand Hutton,York:Food and Environment Research Agency,2010
    [3] Hartmann N B,Von d K F,Hofmann T,et al.Algal testing of titanium dioxide nanoparticles-testing considerations,inhibitory effects and modification of cadmium bioavailability[J].Toxicology,2010,269(2-3):190-197.
    [4] Hartmann N B,Legros S,Von d K F,et al.The potential of TiO2 nanoparticles as carriers for cadmium uptake in Lumbriculus variegatus and Daphnia magna[J].Aquatic Toxicology,2012,118(2):1-8.
    [5] Yang W W,Miao A J,Yang L Y.Cd2+ toxicity to a green alga Chlamydomonas reinhardtii as influenced by its adsorption on TiO2 engineered nanoparticles[J].Plos One,2012,7(3):e32300
    [6] Balbi T,Smerilli A,Fabbri R,et al.Co-exposure to n-TiO2 and Cd2+ results in interactive effects on biomarker responses but not in increased toxicity in the marine bivalve M.galloprovincialis[J].Science of the Total Environment,2014,493:355-364.
    [7] Hu X L,Chen Q Q,Jiang L,et al.Combined effects of titanium dioxide and humic acid on the bioaccumulation of cadmium in zebrafish[J].Environmental Pollution,2011,159(5):1151-1158.
    [8] Canesi L,Ciacci C,Fabbri R,et al.Bivalve molluscs as a unique target group for nanoparticle toxicity[J].Marine Environmental Research,2012,76:16-21.
    [9] 韩庆喜,高雯芳,李宝泉,等.胶州湾菲律宾蛤仔生物量与资源评估[J].动物学杂志,2004,39(5):60-62.Han Q X,Gao W F,Li B Q,et al.Evaluation on the biomass and resource of Ruditapes philippinarum from Jiaozhou Bay[J].Chinese Journal of Zoology,2004,39(5):60-62.
    [10] 彭玲,曾江宁,陈全震,等.镉对厚壳贻贝急性毒性及对其鳃抗氧化酶活性的影响[J].环境科学与技术,2015,38(2):13-18.Peng L,Zeng J N,Chen Q Z,et al.Effects of cadmium on antioxidant enzyme activity in gill of Mytilus coruscus and acute toxicity of cadmium on Mytilus coruscus[J].Environmental Science & Technology,2015,38(2):13-18.
    [11] EPA.Priority Pollutant List [EB/OR].(2014-12-1) [2018-01-15].https://www.epa.gov/sites/production/files/2015-09/documents/priority-pollutant-list-epa.pdf
    [12] European Union.Decision No.2455/2001/EC of the European Parliament and of the Council of 20 November 2001 establishing the list of priority substances in the field of water policy and amending Directive 2000/60/EC[J].Official Journal of the European Communities,2001,331:1-5.
    [13] 刘慧杰,刘文君,刘继平,等.南中国海表层海水重金属含量及其潜在生态风险分析[J].中国环境科学,2017,37(10):3891-3898.Liu H J,Liu W J,Liu J P,et al.Heavy metals concentration and its potential ecological risk assessment of surface seawater in South China Sea[J].China Environmental Science,2017,37(10):3891-3898.
    [14] Figueira E,Cardoso P,Freitas R.Ruditapes decussatus and Ruditapes philippinarum exposed to cadmium:Toxicological effects and bioaccumulation patterns[J].Comp Biochem Physiol C-Toxicol Pharmacol,2012,156(2):80-86.
    [15] 于庆云,王悠,徐彦,等.镉和铅对菲律宾蛤仔脂质过氧化及抗氧化酶活性的影响[J].生态毒理学报,2013,8(4):504-512.Yu Q Y,Wang Y,Xu Y,et al.Eeffects of cadmium and lead on the lipid peroxidation and levels of antioxidant enzymes in Ruditapes philippinarum [J].Asian Journal of Ecotoxicology,2013,8(4):504-512.
    [16] Sheehan D,Meade G,Foley V M,et al.Structure,function and evolution of glutathione transferases:Implications for classification of non-mammalian members of an ancient enzyme superfamily[J].Biochem J,2001,360:1-16.
    [17] 张英.扇贝体内生物标志物对重金属与多环芳烃胁迫的应答[D].青岛:中国科学院研究生院(海洋研究所),2010.Zhang Y,Biomarker Responses to Heavy Metals and Polyeyelic Aromatic Hydroearbons Exposure in Bivalve (Chlamys Farreri)[D].Qingdao:The Institute of Oceanology,Chinese Academy of Scince,2010.
    [18] Amiard J C,Amiard-Triquet C,Barka S,et al.Metallothioneins in aquatic invertebrates:Their role in metal detoxification and their use as biomarkers[J].Aquatic Toxicology,2006,76(2):160-202.
    [19] Mourgaud Y,Martinez E,Geffard A,et al.Metallothionein concentration in the mussel Mytilus galloprovincialis as a biomarker of response to metal contamination:Validation in the field[J].Biomarkers,2002,7(6):479-490.
    [20] Ji C,Wu H,Zhou M,et al.Multiple biomarkers of biological effects induced by cadmium in clam Ruditapes philippinarum[J].Fish & Shellfish Immunology,2015,44(2):430-435.
    [21] Yang C Y,Liu S J,Zhou S W,et al.Allelochemical ethyl 2-methyl acetoacetate (ema) induces oxidative damage and antioxidant responses in Phaeodactylum tricornutum[J].Pesticide Biochemistry and Physiology,2011,100(1):93-103.
    [22] Cuypers A,Plusquin M,Remans T,et al.Cadmium stress:An oxidative challenge[J].Biometals,2010,23(5):927-940.
    [23] Harris E D.Regulation of antioxidant enzymes[J].Journal of Nutrition,1992,122(3):625-626.
    [24] Stohs S J,Bagchi D,Hassoun E,et al.Oxidative mechanisms in the toxicity of chromium and cadmium ions[J].Journal of Environmental Pathology Toxicology and Oncology,2000,19(3):201-213.
    [25] Canesi L,Frenzilli G,Balbi T,et al.Interactive effects of n-TiO2 and 2,3,7,8-TCDD on the marine bivalve Mytilus galloprovincialis[J].Aquatic Toxicology,2014,153:53-65.
    [26] Balbi T,Smerilli A,Fabbri R,et al.Co-exposure to n-TiO2 and Cd2+ results in interactive effects on biomarker responses but not in increased toxicity in the marine bivalve M.galloprovincialis[J].Science of The Total Environment,2014,493:355-364.
    [27] Cherchi C,Chernenko T,Diem M,et al.Impact of nano titanium dioxide exposure on cellular structure of Anabaena variabilis and evidence of internalization[J].Environ Toxicol Chem,2011,30(4):861-869.
    [28] Sendra M,Pintado-Herrera M G,Aguirre- Martínez G V,et al.Are the TiO2 NPs a “Trojan horse” for personal care products (PCPs) in the clam Ruditapes philippinarum?[J].Chemosphere,2017,185:192-204.
    [29] 刘雪岩,杨丽君,金燕利,等.纳米TiO2对镉(Ⅱ)的吸附性能[J].中国有色金属学报,2011,21(11):2971-2977.Liu X Y,Yang L J,Jin Y L,et al.Adsorption properties of nano-TiO2 for Cd(II)[J].The Chinese Journal of Nonferrous Metals,2011,21(11):2971-2977.
    [30] 肖丽华,李大光.纳米TiO2对铅镉离子的吸附性能研究[J].广州化工,2006,34(3):35-37.Xiao L H,Li D G,Adsorption of Pb(II) and Cd(II) on nano size titanium(IV) qxide[J].Guangzhou Chemical Industry,2006,34(3):35-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700