自形成磁性液体热疗的电磁感应热及生物热传递的数值计算
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical analysis of electromagnetically induced heating and bioheat transfer for self-formed magnetic fluids hyperthermia
  • 作者:李强 ; 杨永明 ; 刘洪宇 ; 张龙隆
  • 英文作者:LI Qiang;YANG Yongming;LIU Hongyu;ZHANG Longlong;School of Advanced Materials and Mechatronic Engineering,Hubei Minzu University;Institute of University-industry Cooperation for Advanced Material Forming and Equipment,Hubei Minzu University;
  • 关键词:自形成 ; 磁性液体 ; 电磁感应热 ; 生物热传递
  • 英文关键词:self-formed;;magnetic fluids;;electromagnetically induced;;bioheat transfer
  • 中文刊名:GNCL
  • 英文刊名:Journal of Functional Materials
  • 机构:湖北民族大学新材料与机电工程学院;湖北民族大学新材料成型及装备技术产学研中心;
  • 出版日期:2019-01-30
  • 出版单位:功能材料
  • 年:2019
  • 期:v.50;No.424
  • 基金:湖北省高等学校优秀中青年科技创新团队计划基金资助项目(T201712);; 湖北民族学院博士科研启动基金资助项目(MY2012B006);湖北民族学院院内青年科研基金资助项目(MY2017Q006);湖北民族学院大学生创新创业资助项目(201810517280,201810517289)
  • 语种:中文;
  • 页:GNCL201901034
  • 页数:5
  • CN:01
  • ISSN:50-1099/TH
  • 分类号:216-220
摘要
建立了肿瘤和正常生物组织的双球模型,采用了赫尔姆兹线圈产生磁性液体热疗的均匀磁场,利用有限元方法计算自形成CoFe2O4磁性液体热疗的电磁感应热及生物热传递,得出肿瘤组织和健康组织的温度均随时间上升后趋于稳定;肿瘤组织中心的稳定温度最高,温度随着与中心的距离增大而不断减小后趋于稳定;在合适参数下,健康组织的温度处于安全温度范围,磁性液体热疗达到了预期效果。肿瘤组织半径越大,温度下降越慢,稳定温度也越高;在肿瘤组织的区域内,温度变化较小,在健康组织范围内,温度下降后趋于稳定。磁性液体体积分数越大,肿瘤组织中心温度越高。
        In this paper,bilayered spherical model is used in magnetic fluids hyperthermia.The uniform magnetic field is generated by Helmuz coil for magnetic fluids hyperthermia.Electromagnetically induced heating and bioheat transfer for self-formed CoFe2O4 magnetic fluids are numerical analyzed by the finite element analysis method.The temperature of tumor and healthy tissue first increased with time and then reached a stable value.The highest temperature was found in center of tumor and the temperature first decreased with the increasing distance to the center of tumor,and then kept a stable value.The temperature of healthy tissue was a security value and the desired effect of magnetic fluids hyperthermia was obtained in a suitable parameters.The larger the radius of tumor tissue was,the slower the temperature droped and the higher the stability temperature was.The drop rate of temperature was flat in tumor tissue,but reached a stable value in healthy tissue.The temperature increased with the increasing volume fraction of magnetic fluids in the center of tumor tissue.
引文
[1]Gilchrist R K,Medal R,Shorey W D,et al.Selective inductive heating of lymph nodes[J].Annals of Surgery,1957,146(4):596-606.
    [2]Rosensweig R E.Ferrohydrodynamics[M].New York:Cambridge University Press,1985.
    [3]Li J,Dai D,Liu X,et al.Preparation and characterization of self-formed CoFe2O4ferrofluid[J].Journal of Materials Research,2007,22(4):886-892.
    [4]Jordan A,Wust P,Fahling H,et al.Inducive heating of ferrimegnetic particles and magnetic fluids:physical evaluation of their potential for hyperthermia[J].International Journal of Hyperthermia,2009,25(7):499-511.
    [5]Zhang L Y,Gu H C,Wang X M.Magnetite ferrofluid with high specific absorption rate for application in hyperthermia[J].Journal of Magnetism and Magentic Materials,2007,311(1):228-233.
    [6]Wu L,Cheng J J,Liu W Z,et al.Numerical analysis of electromagnetically induced heating and bioheat transfer for magnetic fluid hyperthermia[J].IEEE Transactions on Magnetics,2015,51(2):1-4.
    [7]Subramanian M,Miaskowski A,Pearce G,et al.A coil system for real-time magnetic fluid hyperthermia microscopy studies[J].International Journal of Hyperthermia,2016,32(1):1-9.
    [8]Rosensweig R E.Heating magnetic fluid with alternating magnetic field[J].Journal of Magnetism and Magentic Materials,2002,252(1-3):370-374.
    [9]Marin C N,Marinova I,Fannin P C.Theoretical evaluation of the heating rate of ferrofluids[J].Journal of Thermal Analysis and Calorimetry,2015,119(2):1199-1203.
    [10]Huang S,Wang S Y,Gupta A,et al.On the measurement technique for specific absorption rate of nanoparticles in an alternating electromagnetic field[J].Measurement Science and Technology,2012,23(3):035701.
    [11]Fannin P C,Marin C N,Raj K,et al.An experimental study of the dynamic properties of nanoparticle colloids with identical magnetization but different particle size[J].Journal of Magnetism and Magentic Materials,2012,324(21):3443-3447.
    [12]Payet B,Siblini A,Blanc-Mignon M F,et al.Comparison between a magneto-optical method and Fannin's technique for the measurement of Brown's relaxation frequency of ferrofluids[J].IEEE Transactions on Magnetics,1999,35(3):2018-2023.
    [13]Li Qiang,Tan Xingyi,Yang Yongming,et al.Heating rate of self-formed CoFe2O4 magnetic fluids[J].Journal of Functional Materials,2017,48(7):07098-07103(in Chinese).李强,谭兴毅,杨永明,等.自形成CoFe2O4磁性液体的热效率[J].功能材料,2017,48(7):07098-07103.
    [14]Parekh K,Upadhyay R,Mehta R,et al.Experimental investigation of nearly monodispersed ternary Mn0.5Zn0.5Fe2O4 magnetic fluid[J].Magnetohydrodynamics,2007,43(4):393-399.
    [15]Sundar L S,Singh M K,Sousa A C M.Investigation of thermal conductivity and viscosity of Fe3O4nanofluid for heat transfer applications[J].International Communications in Heat and Mass Transfer,2013,44(5):7-14.
    [16]Pankhurst Q A,Connolly J,Jones S K,et al.Applications of magnetic nanoparticles in biomedicine[J].Journal of Physics D:Applied Physics,2003,36(13):R167-R181.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700