基于量子隐形传态和MDI协议的量子网络
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Quantum network based on quantum teleportation and MDI protocol
  • 作者:于浩 ; 张影 ; 卓文合 ; 完颜绍澎 ; 刘金锁
  • 英文作者:YU Hao;ZHANG Ying;ZHUO Wenhe;WANYAN Shaopeng;LIU Jinsuo;Information and Communication Branch of State Grid Anhui Electric Power Co.,Ltd.;Nari Group Corporation/State Grid Electronic Power Research Institute;NRGD Quantum CTEK,LTD.;
  • 关键词:量子信息 ; 量子密钥分发 ; 量子隐形传态 ; 测量设备无关量子密钥分发 ; 密钥率
  • 英文关键词:quantum information;;quantum key distribution;;quantum teleportation;;measurement device-independent quantum key distribution;;key rate
  • 中文刊名:LDXU
  • 英文刊名:Chinese Journal of Quantum Electronics
  • 机构:国网安徽省电力有限公司信息通信分公司;南瑞集团有限公司(国网电力科学研究院有限公司);南京南瑞国盾量子技术有限公司;
  • 出版日期:2019-07-15
  • 出版单位:量子电子学报
  • 年:2019
  • 期:v.36;No.189
  • 基金:国网安徽省电力有限公司2018年创新项目,B1120718003P~~
  • 语种:中文;
  • 页:LDXU201904011
  • 页数:6
  • CN:04
  • ISSN:34-1163/TN
  • 分类号:68-73
摘要
量子密钥分发利用量子力学特性来保证通信安全,它使通信的双方能够产生并分享一个随机的、安全的密钥,用于对传输数据进行加解密。测量设备无关量子密钥分发(MDI-QKD)是量子密钥分发(QKD)的重要组成部分,能够解决QKD协议中因为测量设备引起的安全漏洞,在保证协议安全性的同时延长通信距离。分析了量子网络中量子隐形传态原理,针对MDI-QKD协议的特殊性,提出将量子隐形传态应用到MDI-QKD协议中。该协议将Alice制备的量子态在量子网络中通过隐形传态的方式传送给David,然后David与通信的另一方Bob一起运行MDI-QKD协议。阐述了基于量子隐形传态的MDI-QKD协议的实现流程,并引入了量子态的保真度参数,对MDI-QKD协议的密钥率进行了分析。仿真实验表明量子隐形传态对MDI-QKD协议的增益效果十分明显,可以大幅度延长密钥的安全传输距离,保证了安全协议对测量设备的不依赖性,有效避免了QKD系统中测量器端的所有攻击。
        Quantum key distribution uses quantum mechanical properties to ensure communication security.It enables both sides of the communication to generate and share a random,secure key for encrypting and decrypting the transmitted data.Measurement device-independent quantum key distribution(MDI-QKD)is an important part of quantum key distribution(QKD).It can solve the security vulnerabilities caused by measurement devices in QKD protocol and extend the communication distance while guaranteeing the security of the protocol.The principle of quantum teleportation in quantum networks is analyzed.According to the particularity of MDI-QKD protocol,quantum teleportation is applied to MDI-QKD protocol.The protocol transmits the quantum states prepared by Alice to David via teleportation in quantum networks,and then David and the other side of communication,Bob,run the MDI-QKD protocol together.The realization flow of MDI-QKD protocol based on quantum teleportation is described and the fidelity parameter of quantum state is introduced.The key rate of MDI-QKD protocol is analyzed.Simulation results show the gain effect of quantum teleportation on MDI-QKD protocol is very obvious,which can greatly extend the secure transmission distance of the key and ensure that the security protocol does not depend on the measuring equipment.All attacks on the measurement side of QKD system are effectively avoided.
引文
[1]Bennett C H,Brassard G.Quantum cryptography:Public key distribution and coin tossing[C].IEEE Conference Computers, Systems Signal Processing,1984:175-179.
    [2]He X L,Yang C P.Deterministic transfer of multiqubit GHZ entangled states and quantum secret sharing between different cavities[J].Quantum Information Processing,2015,14(12):4461-4474.
    [3]Mao Qianping,Zhao Shengmei,Wang Le,et al. Measurement-device-independent quantum key distribution based on wavelength division multiplexing technology[J].Chinese Journal of Quantum Electronics(量子电子学报),2017,34(1):46-53(in Chinese).
    [4]Chen Xiaofeng,Lin Song.Key management scheme for wireless sensor networks based on quantum cryptography[J].Chinese Journal of Quantum Electronics(量子电子学报),2018,35(4):455-460(in Chinese).
    [5]Wang Le,Zou Li,Zhao Shengmei.A novel quantum secret sharing scheme with a trustful center[J].Chinese Journal of Quantum Electronics(量子电子学报),2014,31(5):591-598(in Chinese).
    [6]Zhu Z C,Hu A Q,Fu A M.Two new controlled not gate based quantum secret sharing protocols without entanglement attenuation[J].International Journal of Theoretical Physics,2016,55(5):2342-2353.
    [7]Liu F,Su Q,Wen Q Y.Eavesdropping on multiparty quantum secret sharing scheme based on the phase shift operations[J].International Journal of Theoretical Physics,2014,53(5):1730-1737.
    [8]Chan P,Slater J A,Lucio-Martinez I,et al.Modeling a measurement-device-independent quantum key distribution system[J].Optics Express,2014,22(11):12716-12736.
    [9]Yan Long,Sun Hao,Zhao Shengmei.Research on device-independent quantum key distribution protocol for photon orbital angular momentum measurement using decoying state[J].Signal Processing(信号处理),2014,30(11):1275-1278(in Chinese).
    [10]Zhu F,Zhang C H,Liu A P,et al.Enhancing the performance of the measurement-device-independent quantum key distribution with heralded pair-coherent sources[J].Physics Letters A,2016,16(20):1-6.
    [11]Zhou J,Xu F,Sun E,et al.Coherent optical interleaved SC-FDM uplink scheme for long-reach passive optical network[J].IEEE Photonics Journal,2016,8(2):1-8.
    [12]Lim C C W,Walenta N,Legre M,et al. Random variation of detector efficiency:A countermeasure against detector blinding attacks for quantum key distribution[J].IEEE Journal of Selected Topics in Quantum Electronics,2015,21(3):192-196.
    [13]Tang X,Wonfor A,Kumar R,et al. Quantum-safe metro network with low-latency reconfigurable quantum key distribution[J].Journal of Lightwave Technology,2018,36(22):5230-5236.
    [14]Lin J,Yang C W,et al.Intercept-resend attacks on semi-quantum secret sharing and the improvements[J].International Journal of Theoretical Physics,2013,52(1):156-162.
    [15]Shi J,Shi R,Peng X,et al. Distributed quantum packet transmission in non-maximally entangled relay system[J].International Journal of Theoretical Physics,2015,54(4):1128-1141.
    [16]Wen Q Y,Gao F,et al.Participant attack and improvement to multiparty quantum secret sharing based on GHZ states[J].International Journal of Theoretical Physics,2013,52(1):293-301.
    [17]Zhang K J,Jia H Y.Cryptanalysis of a quantum proxy weak blind signature scheme[J].International Journal of Theoretical Physics,2015,54(2):582-588.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700