气态煤油超声速燃烧简化化学反应模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Reduced kinetic model for supersonic combustion of vaporized kerosene
  • 作者:樊孝峰 ; 王江峰 ; 赵法明 ; 杨天鹏
  • 英文作者:FAN Xiaofeng;WANG Jiangfeng;ZHAO Faming;YANG Tianpeng;College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics;
  • 关键词:超声速燃烧 ; RP-3航空煤油 ; 化学反应模型 ; 敏感性分析 ; 反应路径分析
  • 英文关键词:supersonic combustion;;RP-3 aviation kerosene;;chemical reaction model;;sensitivity analysis;;reaction path analysis
  • 中文刊名:GFKJ
  • 英文刊名:Journal of National University of Defense Technology
  • 机构:南京航空航天大学航空宇航学院;
  • 出版日期:2019-02-28
  • 出版单位:国防科技大学学报
  • 年:2019
  • 期:v.41
  • 基金:南京航空航天大学重大项目培育基金资助项目(NP2018402)
  • 语种:中文;
  • 页:GFKJ201901008
  • 页数:10
  • CN:01
  • ISSN:43-1067/T
  • 分类号:51-60
摘要
为探究超燃冲压发动机燃烧室中煤油燃料燃烧的化学动力学过程,综合采用敏感性分析方法与路径分析方法,针对RP-3航空煤油三组分替代燃料的详细反应模型进行简化,建立一种适用于超声速燃烧流场数值模拟的新型26组分89反应简化燃烧反应模型。采用该简化燃烧模型对RP-3航空煤油替代燃料的点火、燃烧特性进行数值模拟,并与详细反应模型结果和试验数据进行对比校验。此外,将该简化燃烧模型与超声速燃烧流场计算方法相结合,数值分析了典型超燃冲压发动机燃烧室流场内化学动力学特性。研究结果表明:新型简化燃烧反应模型在不影响数值模拟精度的前提下,有效减少了反应组分与反应方程个数,提高了超声速复杂燃烧流场的数值模拟效率,并且能够准确获得烯烃、炔烃等重要中间燃烧产物以及小分子活性基团的空间分布规律,给出更全面的流场信息。
        In order to explore the chemical kinetics process of kerosene combustion in scramjet combustor, a detailed chemical reaction model for the combustion of RP-3 surrogate fuel was simplified to obtain a new reduced model(26 species and 89 reactions) based on the sensitivity analysis and reaction path analysis, and the combustion characteristics of supersonic reacting flow field were depicted. The ignition and combustion characteristics of this surrogate fuel under various conditions were simulated by using the reduced reaction model,and the simulation results were compared with the experimental data and the calculated results by the detailed reaction model. Furthermore, numerical simulations were implemented by using a coupled nonequilibrium reaction solver with the proposed reduced model, and the combustion characteristic of a scramjet combustor with single-side cavity was analyzed in detail. The results indicate that the reduced model can represent the ignition and combustion characteristic of the detailed model to some extent. And the proposed reduced chemical kinetic model predicts the myriad details of the reacting flow field accurately, including the distributions of major species, such as alkenes and cycloalkanes. At the same time, the number of species involved in the reduced model is much fewer, and the reduced model can improve the combustion simulation efficiency.
引文
[1] Dagaut P,El Bakali A, Ristori A. The combustion of kerosene: experimental results and kinetic modelling using 1-to 3-component surrogate model fuels[J]. Fuel, 2006, 85(7/8): 944-956.
    [2] Honnet S, Seshadri K, Niemann U, et al. A surrogate fuel for kerosene[J]. Proceedings of the Combustion Institute, 2009, 32(1): 485-492.
    [3] 徐佳琪, 郭俊江, 刘爱科, 等. RP-3替代燃料自点火燃烧机理构建及动力学模拟[J]. 物理化学学报, 2015,31(4): 643-652.XU Jiaqi, GUO Junjiang, LIU Aike, et al. Construction of autoignition mechanisms for the combustion of RP-3 surrogate fuel and kinetics simulation [J]. Acta Physico-Chimica Sinica, 2015, 31(4): 643-652.(in Chinese)
    [4] 王慧汝, 金捷, 王静波, 等. 正癸烷燃烧机理及航空煤油点火延时动力学模拟[J]. 高等学校化学学报, 2012, 33(2): 341-345.WANG Huiru, JIN Jie, WANG Jingbo, et al. Combustion mechanism of n-decane at high temperatures and kinetic modeling of ignition delay for aviation kerosene [J]. Chemical Journal of Chinese Universities, 2012, 33(2): 341-345.(in Chinese)
    [5] Violi A, Yan S, Eddings E G, et al. Experimental formulation and kinetic model for JP-8 surrogate mixtures[J]. Combustion Science and Technology, 2002, 174(11/12): 399-417.
    [6] Niemeyer K E, Sung C J, Raju M P. Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis[J]. Combustion and Flame, 2010, 157(9): 1760-1770.
    [7] Chang Y C, Jia M, Liu Y D, et al. Development of a new skeletal mechanism for n-decane oxidation under engine-relevant conditions based on a decoupling methodology[J]. Combustion and Flame, 2013, 160(8): 1315-1332.
    [8] 曾文, 李海霞, 马洪安, 等. RP-3航空煤油模拟替代燃料的化学反应详细机理[J]. 航空动力学报, 2014, 29(12): 2810-2816.ZENG Wen, LI Haixia, MA Hongan, et al. Detailed chemical reaction mechanism of surrogate fuel for RP-3 kerosene[J]. Journal of Aerospace Power, 2014, 29(12): 2810-2816.(in Chinese)
    [9] 刘宇, 曾文, 马洪安, 等. RP-3航空煤油3组分模拟替代燃料燃烧反应机理[J]. 航空动力学报, 2016, 31(9): 2055-2064.LIU Yu, ZENG Wen, MA Hongan, et al. Combustion reaction mechanism of three-component simulation surrogate fuel for RP-3 kerosene [J]. Journal of Aerospace Power, 2016, 31(9): 2055-2064.(in Chinese)
    [10] 钟北京, 文斐. 基于特征值分析的正癸烷骨架和总包简化机理[J]. 物理化学学报, 2014, 30(2): 210-216.ZHONG Beijing, WEN Fei. Skeletal and reduced mechanisms of n-decane simplified with eigenvalue analysis [J]. Acta Physico-Chimica Sinica, 2014, 30(2): 210-216.(in Chinese)
    [11] Ferri A.Mixing-controlled supersonic combustion[J]. Annual Review of Fluid Mechanics, 1961, 5(5): 301-338.
    [12] Segal C. The scramjet engine: processes and characteristics[M]. USA: Cambridge University Press, 2009.
    [13] Colussi A J, Benson S W. The very low-pressure pyrolysis of 2-phenylethylamine. The enthalpy of formation of the aminomethyl radical[J]. International Journal of Chemical Kinetics, 1977, 9(2): 307-316.
    [14] 张克松. 柴油机燃烧的数值模拟研究[D]. 济南: 山东大学, 2013.ZHANG Kesong. Numerical investigation of diesel combustion[D]. Jinan: Shandong University, 2013.(in Chinese)
    [15] 于珊, 张久顺, 魏晓丽. 环烷烃催化裂解生成乙烯和丙烯反应探析[J]. 石油学报(石油加工), 2013, 29(3): 475-481.YU Shan, ZHANG Jiushun, WEI Xiaoli. Exploration and analysis on ethylene and propylene formation in naphthene catalytic cracking [J]. Acta Petrolei Sinica(Petroleum Processing Section), 2013, 29(3): 475-481.(in Chinese)
    [16] Lechert H, Meyer A, Bezouhanova C, et al. Conversion of methylcyclopentane on H-ZSM 5 zeolites[J]. Journal of Molecular Catalysis, 1986, 35(3): 349-354.
    [17] 唐洪昌, 张昌华, 李萍, 等. 煤油自点火特性的实验研究[J]. 物理化学学报, 2012, 28(4): 787-791.TANG Hongchang, ZHANG Changhua, LI Ping, et al.Experimental study of autoignition characteristics of kerosene[J]. Acta Physico-Chimica Sinica, 2012, 28(4): 787-791.(in Chinese)
    [18] 钟战, 王振国, 孙明波. 凹腔布置方案对气化煤油超声速燃烧特性的影响[J]. 国防科技大学学报, 2016, 38(2): 1-5.ZHONG Zhan, WANG Zhenguo, SUN Mingbo.Effects of cavity arrangement on characteristics of supersonic combustion of vaporized kerosene [J]. Journal of National University of Defense Technology, 2016, 38(2): 1-5.(in Chinese)
    [19] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
    [20] 张向洪, 伍贻兆, 王江峰. HLLE+格式在高超声速热化学非平衡流场中的应用[J]. 南京航空航天大学学报, 2011, 43(2): 154-158.ZHANG Xianghong, WU Yizhao, WANG Jiangfeng.Numerical simulation of thermo-chemical non-equilibrium hypersonic flows using HLLE+ scheme[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2011, 43(2): 154-158.(in Chinese)
    [21] 刘晨, 王江峰, 伍贻兆. 激波诱导燃烧模拟中轴对称边界数值异常研究[J]. 航空动力学报, 2009, 24(6): 1219-1228.LIU Chen, WANG Jiangfeng, WU Yizhao. Study on the abnormity of the axial-symmetric boundary in simulation of shock-induced combustion[J]. Journal of Aerospace Power, 2009, 24(6): 1219-1228.(in Chinese)
    [22] 樊孝峰, 王江峰, 赵法明. Roe格式在多组元燃烧流场数值模拟中的应用[J]. 南京航空航天大学学报, 2016, 48(3): 347-351.FAN Xiaofeng, WANG Jiangfeng, ZHAO Faming. Numerical simulation of multi-component reacting flow using Roe scheme[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2016, 48(3): 347-351.(in Chinese)
    [23] Ciezki H K, Adomeit G. Shock-tube investigation of self-ignition of n-heptane-air mixtures under engine relevant conditions [J]. Combustion and Flame, 1993, 93(4): 421-433.
    [24] Wang T S. Thermophysics characterization of kerosene combustion[J]. Journal of Thermophysics and Heat Transfer, 2001, 15(2): 76-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700