空间位阻对吡啶过度修饰导致丝光沸石二甲醚羰基化酸性位中毒后再生的诱导作用(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spacial hindrance induced recovery of over-poisoned active acid sites in pyridine-modified H-mordenite for dimethyl ether carbonylation
  • 作者:赵娜 ; 田野 ; 张丽芙 ; 程庆鹏 ; 吕帅帅 ; 丁彤 ; 胡振芃 ; 马新宾 ; 李新刚
  • 英文作者:Na Zhao;Ye Tian;Lifu Zhang;Qingpeng Cheng;Shuaishuai Lyu;Tong Ding;Zhenpeng Hu;Xinbin Ma;Xingang Li;Collaborative Innovation Center of Chemical Science and Engineering (Tianjin),School of Chemical Engineering and Technology,Tianjin University;Tianjin Key Laboratory of Applied Catalysis Science and Engineering,Tianjin University;School of Physics,Nankai University;Key Laboratory for Green Chemical Technology of Ministry of Education,School of Chemical Engineering and Technology,Tianjin University;
  • 关键词:丝光沸石 ; 吡啶修饰 ; 二甲醚 ; 羰基化 ; 再生 ; 空间位阻 ; 稳定性
  • 英文关键词:H-mordenite;;Pyridine modification;;Dimethyl ether;;Carbonylation;;Regeneration;;Spacial hindrance
  • 中文刊名:CHUA
  • 英文刊名:Chinese Journal of Catalysis
  • 机构:天津大学化工学院天津化学化工协同创新中心;天津大学化工学院天津市应用催化科学与工程重点实验室;南开大学物理学院;天津大学化工学院教育部绿色化学技术重点实验室;
  • 出版日期:2019-05-07
  • 出版单位:催化学报
  • 年:2019
  • 期:v.40
  • 基金:supported by the National Natural Science Foundation of China(21476159,21676182)~~
  • 语种:英文;
  • 页:CHUA201906013
  • 页数:12
  • CN:06
  • ISSN:21-1601/O6
  • 分类号:124-135
摘要
当今世界环境与能源问题日益加剧,乙醇作为一种重要的清洁燃料和化学品受到广泛关注,迫切需要探索高效的乙醇合成方法,以满足日益增长的市场需求.其中,将煤炭、生物质、页岩气等为原料合成的二甲醚通过羰基化反应制乙酸甲酯、乙酸甲酯加氢制乙醇的串联式绿色乙醇合成路线具有重要的工业应用前景.然而,在二甲醚羰基化过程中,丝光沸石分子筛易积碳失活,阻碍了其工业应用.吡啶改性可以毒化丝光沸石12元环孔道中的酸性位,抑制积碳的形成,进而大幅度提高该催化剂的稳定性,但同时会使其催化活性降低约40%–50%.为了解决这一难题,本文从分子水平上研究了吡啶吸附行为以及分子筛骨架空间位阻对丝光沸石催化剂上二甲醚羰基化反应的影响.通过解析丝光沸石的骨架结构,我们发现位于8元环侧袋和12元环孔道共用孔壁处O_2位置上的酸性位是二甲醚羰基化反应的活性位,但它们在吡啶修饰过程中易被毒化而使催化剂活性下降.密度泛函理论计算结果表明,吡啶分子因受分子筛骨架空间位阻的影响,在O_2处酸性位上的吸附较弱.而实验结果也表明,通过673 K热处理可以再生被吡啶毒化的O_2活性位,而并不影响12元环孔道中其它吡啶分子的吸附.因此,该热处理方法可以使丝光沸石催化剂保持高稳定性的同时,将二甲醚羰基化反应催化活性提高约60%.本文从分子水平证明了丝光沸石中O_2活性位对二甲醚羰基化反应的重要作用,为绿色乙醇合成技术研究提供了新的思路,也为其它高效分子筛催化体系设计提供了有益的参考.
        Zeolite catalysts, such as H-mordenite(H-MOR), are readily deactivated by coke deposition in carbonylation reactions. Pyridine modification of H-MOR can improve its stability but can lead to an undesirable loss in catalytic activity. Herein, we report the intrinsic impact of the pyridine adsorption behavior on H-MOR and the spacial hindrance of the zeolite frameworks on dimethyl ether(DME) carbonylation at a molecular level. We discovered that acid sites at O_2 positions, located on common walls of eight-membered ring(8-MR) side pockets and 12-MR channels, were active in DME carbonylation, but were unfortunately poisoned during pyridine modification. Density functional theory calculations revealed that the pyridine-poisoned acid sites at the O_2 positions could be easily regenerated due to the spacial hindrance of the zeolite frameworks. Accordingly, they can be facilely regenerated by proper thermal treatment, which induces 60% promotion in the catalytic activity along with a high stability. Our findings demonstrate the determining role of O_2 positions in H-MOR for DME carbonylation and provide a new avenue for the rational design of other efficient zeolite-relevant catalytic systems.
引文
[1]L.D.Schmidt,P.J.Dauenhauer,Nature,2007,447,914-915.
    [2]J.Goldemberg,Science,2007,315,808-810.
    [3]X.Li,X.San,Y.Zhang,T.Ichii,M.Meng,Y.Tan,N.Tsubaki,Chem Sus Chem,2010,3,1192-1199.
    [4]Q.Qian,M.Cui,J.Zhang,J.Xiang,J.Song,G.Yang,B.Han,Green Chem.,2018,20,206-213.
    [5]J.J.Spivey,A.Egbebi,Chem.Soc.Rev.,2007,36,1514-1528.
    [6]Y.Zhang,C.Ye,C.Guo,C.Gan,X.Tong,Chin.J.Catal,2018,39,99-108.
    [7]J.Sun,G.Yang,Y.Yoneyama,N.Tsubaki,ACS Catal.,2014,4,3346-3356.
    [8]K.Takeishi,Biofuels,2010,1,217-226.
    [9]H.Landalv,The bio-DME Project,Presented at:3rd International DME Conference&5th Asian DME Conference,Shanghai,China,21-24 September 2008.
    [10]J.Liu,H.Xue,X.Huang,P.H.Wu,S.J.Huang,S.B.Liu,W.Shen,Chin.J.Catal.,2010,31,729-738.
    [11]T.He,X.Liu,S.Xu,X.Han,X.Pan,G.Hou,X.Bao,J.Phys.Chem.C,2016,120,22526-22531.
    [12]H.Zhan,S.Huang,Y.Li,J.Lv,S.Wang,X.Ma,Catal.Sci.Technol.,2015,5,4378-4389.
    [13]H.Zhou,W.Zhu,L.Shi,H.Liu,S.Liu,Y.Ni,Y.Liu,Y.He,S.Xu,L.Li,Z.Liu,J.Mol.Catal.A,2016,417,1-9.
    [14]P.Lu,G.Yang,Y.Tanaka,N.Tsubaki,Catal.Today,2014,232,22-26.
    [15]P.Haro,P.Ollero,A.V.Villanueva,A.Gomez-Barez,Appl.Energy,2013,102,950-961.
    [16]P.Haro,P.Ollero,A.V.Villanueva,C.R.Valle,Energy,2012,44,891-901.
    [17]Y.Zhao,B.Shan,Y.Wang,J.Zhou,S.Wang,X.Ma,Ind.Eng.Chem.Res.,2018,57,4526-4534.
    [18]Y.Liu,K.Murata,M.Inaba,React.Kinet.Mech.Cat.,2016,117,223-238.
    [19]G.J.Sunley,D.J.Watson,Catal.Today,2000,58,293-307.
    [20]M.S.Kazantsev,M.V.Luzgin,G.G.Volkova,A.G.Stepanov,J.Catal.,2012,291,9-16.
    [21]X.Li,R.Prins,J.A.van Bokhoven,J.Catal.,2009,262,257-265.
    [22]X.Li,X.Chen,Z.Yang,X.Zhu,S.Xu,S.Xie,S.Liu,X.Liu,L.Xu,Microporous.Mesoporous.Mater.,2018,257,79-84.
    [23]P.Cheung,A.Bhan,G.Sunley,D.Law,E.Iglesia,J.Catal.,2007,245,110-123.
    [24]M.Boronat,C.Martinez,A.Corma,Chem.Chem.Phys.,2011,13,2603-2612.
    [25]T.Blasco,M.Boronat,P.Concepción,A.Corma,D.Law,J.A.Vidal-Moya,Angew.Chem.Int.Ed.,2007,46,3938-3941.
    [26]M.Boronat,C.Martinez-Sanchez,D.Law,A.Corma,J.Am.Chem.Soc.,2008,130,16316-16323.
    [27]B.Li,J.Xu,B.Han,X.Wang,G.Qi,Z.Zhang,C.Wang,F.Deng,J.Phys.Chem.C,2013,117,5840-5847.
    [28]A.A.C.Reule,J.A.Sawada,N.Semagina,J.Catal.,2017,349,98-109.
    [29]T.He,P.Ren,X.Liu,S.Xu,X.Han,X.Bao,Chem.Commun.,2015,51,16868-16870.
    [30]A.Bhan,A.D.Allian,G.J.Sunley,D.J.Law,E.Iglesia,J.Am.Chem.Soc.,2007,129,4919-4924.
    [31]Y.Li,Q.Sun,S.Huang,Z.Cheng,K.Cai,J.Lv,X.Ma,Catal.Today,2017,311,81-88.
    [32]F.Jiao,X.Pan,K.Gong,Y.Chen,G.Li,X.Bao,Angew.Chem.Int.Ed.,2018,57,4692-4696.
    [33]Y.Liu,N.Zhao,H.Xian,Q.Cheng,Y.Tan,N.Tsubaki,X.Li,ACS Appl.Mater.Interfaces,2015,7,8398-8403.
    [34]G.Kresse,Phys.Rev.B,1999,59,1758-1775.
    [35]J.Klime?,D.R.Bowler,A.Michaelides,J.Phys.-Condens.Matter,2010,22,074203.
    [36]M.Dion,H.Rydberg,E.Schr?der,D.C.Langreth,B.I.Lundqvist,Phys.Rev.Lett.,2004,92,246401/1-246401/4.
    [37]C.Naccache,C.F.Ren,G.Coudurier,Stud.Surf.Sci.Catal.,1989,49,661-668.
    [38]J.Kang,H.Liu,Y.M.Zheng,J.Qu,J.P.Chen,J.Colloid Interface Sci.,2011,354,261-267.
    [39]H.G.Karge,M.Lsaniecki,M.Ziolek,G.Onyestyak,A.Kiss,P.Kleinschmit,M.Siray,Stud.Surf.Sci.Catal.,1989,49,1327-1337.
    [40]T.Barzetti,E.Selli,D.Moscotti,L.Forni,J.Chem.Soc.Faraday Trans.,1996,92,1401-1407.
    [41]F.Haase,J.Sauer,J.Am.Chem.Soc.,1995,117,3780-3789.
    [42]G.J.Kennedy,M.Afeworki,D.C.Calabro,C.E.Chase,R.J.Smiley,Appl.Spectrosc.,2004,58,698-704.
    [43]H.Michael,F.Dieter,H.Pfeifer,J.Chem.Soc.Faraday Trans.,1991,87,657-662.
    [44]M.Krossner,J.Sauer,J.Phys.Chem.,1996,100,6199-6211.
    [45]F.Lónyi,J.Valyon,Microporous.Mesoporous.Mater.,2001,47,293-301.
    [46]Z.Zhang,N.Zhao,K.Ma,Q.Cheng,J.Zhang,L.Zheng,Y.Tian,X.Li,Chin.Chem.Lett.,2019,30,513-516.
    [47]M.Wang,S.Huang,J.Lv,Z.Cheng,Y.Li,S.Wang,X.Ma,Chin.J.Catal.,2016,37,1530-1537.
    [48]http://asia.iza-structure.org/IZA-SC/framework_3d.php?STC=MOR.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700