茶白星病不同病情等级下叶际细菌群落多样性与功能预测
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Function Prediction and Phyllosphere Bacterial Diversities on Leave with Different Severities of Tea White Scab Disease
  • 作者:周凌云 ; 向芬 ; 刘红艳 ; 李维 ; 周琳 ; 银霞 ; 曾泽萱 ; 王振中
  • 英文作者:ZHOU Ling-yun;XIANG Feng;LIU Hong-yan;LI Wei;ZHOU Lin;YING Xia;ZENG Ze-xuan;WANG Zhen-zhong;Tea Research Institute of Hunan Academy of Agricultural Sciences;College of Agriculture,Agricultural University Of South China;
  • 关键词:茶叶 ; 叶际细菌 ; 茶白星病 ; 细菌群落 ; 多样性 ; 功能预测
  • 英文关键词:Tea;;Phyllosphere bacteria;;Tea white scab disease;;Bacterial community;;Diversity;;Function prediction
  • 中文刊名:CYTX
  • 英文刊名:Journal of Tea Communication
  • 机构:湖南省农业科学院茶叶研究所;华南农业大学农学院;
  • 出版日期:2019-03-25
  • 出版单位:茶叶通讯
  • 年:2019
  • 期:v.46;No.187
  • 基金:湖南省重点研发项目(2018NK2033);; 国家重点研发计划(2016YED0200904);; 广东省微生物信号与作物病害防控重点实验室开放基金(MSDC-02);; 湖南省农业科学院创新项目(2017QN10)
  • 语种:中文;
  • 页:CYTX201901007
  • 页数:8
  • CN:01
  • ISSN:43-1106/S
  • 分类号:30-37
摘要
茶白星病是一种多年来严重为害高海拔茶园的叶部病害,为了突破该病害生物防控的技术瓶颈,明确不同茶白星病病情等级下叶际细菌群落具有重要意义。运用高通量测序方法比较分析3个不同发病等级的茶白星病叶片(BCK、B2和B4)中细菌群落组成,结果发现:在门水平上,3个病情等级下优势门均为Acidobacteria (酸杆菌门)、Bacteroidetes(拟杆菌门)、Proteobacteria(变形菌门)和Firmicutes(厚壁菌门),其中Proteobacteria(变形菌门)占总数的73.53%~90.25%。相对丰度多样性与茶白星病的发病病情等级呈正相关的为Acidobacteria(酸杆菌门)和Bacteroidetes(拟杆菌门)。在属水平上,随着病情等级升高,叶际细菌群落整体OTUs、差异OTUs及其多样性均上升。优势属Methylobacterium(甲醇杆菌属)与Hymenobacter(膜杆菌属)的相对丰度与病情等级呈正相关,而Ralstonia(雷氏菌属)与Stenotrophomonas(寡养单胞菌)则相反,表明茶白星病菌与叶际细菌存在协同作用,细菌群落在3个不同病情等级下存在差异,为进一步研究茶叶叶际微生态防控茶白星病提供了科学依据。
        Tea white scab disease is a serious fungal disease in high altitude tea area for many years. Investigation of bacterial community and composition on tea in leaves with different severities of tea disease white scab disease will help improve its biological control. Results showed significant differences of bacterial community structures among 3 different severity levels. Based on the samples of three different severities(BCK,B2 and B4) were analyzed by high throughput DNA sequencing.At the phylum level,the dominants were Acidobacteria,Bacteroidetes, Proteobacteria and Firmicutes, and Proteobacteria in which accounts for 73.53%-90.25%. At the genus level, the relative abundance of Proteobacteria and Firmicutesunder was positively correlated with the severity of the disease. All of OTUs, differential OTUs and diversity of interfoliar bacterial community increased with the increase of disease grade. The relative abundance of Methylobacterium and Hymenobacter was positively correlated with the severity of the disease, while Ralstonia and Stenotrophomonas were opposite, indicating that they might have synergistic effect with the pathogen of tea white scab disease. These results provide a scientific reference for the further study of microecology on tea leaf and the prevention and control of tea white scab disease.
引文
[1]周凌云,刘红艳,李维,等.基于环介导等温扩增技术快速检测茶白星病菌的方法研究[J].茶叶通讯,2017,44(04):31-34.
    [2]吴洪雷,阚晓英,陈莉华,等.茶白星病的发病规律及防治的初步探讨[J].茶叶,1981(03):31-35.
    [3]邓欣,谭济才.茶白星病发生程度与生态环境的关系[J].茶叶通讯,1992(1):37-40.
    [4]邓欣,谭济才.茶树抗病的生化基础和形态抗性概述[C].2005年中南、西南植物病理学会和中国菌物学会联合学术年会论文集,2005.
    [5]Mejía L C,Rojas E I,Maynard Z,et al.Endophytic fungi as biocontrol agents of Theobroma cacao pathogens[J].Biological Control,2008,46(1):4-14.
    [6]Rastogi G,Coaker G L,Leveau J H.New insights into the structure and function of phyllosphere microbiota through highthroughput molecular approaches[J].FEMS Microbiol Lett,2013,348(1):1-10.
    [7]Larran S,PerellóA,Simón M R,et al.Isolation and analysis of endophytic microorganisms in wheat(Triticum aestivum L.)leaves[J].World Journal of Microbiology and Biotechnology,2002,18(7):683-686.
    [8]Whipps J M,Hand P,Pink D,et al.Phyllosphere microbiology with special reference to diversity and plant genotype[J].Journal of Applied Microbiology,2008,105(6):1744-1755.
    [9]Reisberg E E,Hildebrandt U,Riederer M,et al.Distinct phyllosphere bacterial communities on Arabidopsis wax mutant leaves[J].PLOS ONE,2013,8(11):e78613.
    [10]Mwajita M R,Murage H,Tani A,et al.Evaluation of rhizosphere,rhizoplane and phyllosphere bacteria and fungi isolated from rice in Kenya for plant growth promoters[J].Springer Plus,2013,2(1):1-9.
    [11]Lopez-Velasco G,Welbaum G E,Boyer R R,et al.Changes in spinach phylloepiphytic bacteria communities following minimal processing and refrigerated storage described using pyrosequencing of 16S rRNA amplicons[J].J Appl Microbiol,2011,110(5):1203-1214.
    [12]Leveau J H J,Tech JJ.Grapevine Microbiomics Bacterial Diversity on Grape Leaves and Berries Revealed by High Throughput Sequence Analysis of 16S rRNA Amplicons[C].International Syngosium on Biological Cont201 of Postharvest Diseases:Challenges and Opportunities 90S,2010:31-42.
    [13]Unterseher M,Siddique A B,Brachmann A,et al.Diversity and Composition of the Leaf Mycobiome of Beech(Fagus sylvatica)Are Affected by Local Habitat Conditions and Leaf Biochemistry[J].PLOS ONE.2016,11(4):e152878.
    [14]Yang T.Sun H,Shen L,et al.Fungal assemblages in different habitats in an Erman's birch forest[J].Frontiers in microbiology,2016,7:1368.
    [15]Fonseca-García C,Coleman-Derr D,Garrido E,et al.The Cacti Microbiome:Interplay between Habitat-Filtering and HostSpecificity[J].Frontiers in Microbiology,2016,7.
    [16]Sapkota R,Knorr K,Jorgensen L N,et al.Host genotype is an important determinant of the cereal phyllosphere mycobiome[J].New Phytol,2015,207(4):1134-1144.
    [17]Zhang Y,Cong J,Lu H,et al.Soil bacterial diversity patterns and drivers along an elevational gradient on Shennongjia Mountain,China[J].Microb Biotechnol,2015,8(4):739-746.
    [18]Copeland J K,Yuan L,Layeghifard M,et al.Seasonal Community Succession of the Phyllosphere Microbiome[J].Molecular Plant-Microbe Interactions,2015,28(3):274-285.
    [19]韩文炎,王皖蒙,郭赟,等.茶园土壤细菌丰度及其影响因子研究[J].茶叶科学,2013,33(02):147-154.
    [20]赵艳,胡桂萍,宋凤琴,等.茶园根际土壤细菌群落结构及多样性[J].生物安全学报,2013,22(03):187-195.
    [21]罗路云,张卓,金德才,等.南瓜白粉病不同病情等级下叶际细菌群落结构和多样性[J].植物病理学报,2017,47(05):688-695.
    [22]Claesson M J,O'Sullivan O,Wang Q,et al.Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine[J].PLOS ONE.2009,4(8):e6669.
    [23]卢东升,吴小芹.茶园有益微生物及其微生态效应研究进展[J].信阳师范学院学报(自然科学版),2005(01):117-120.
    [24]孟建宇,李蘅,樊兆阳,等.低温纤维素降解菌的分离与鉴定[J].应用与环境生物学报,2014,20(01):152-156.
    [25]袁楠,亢宗静,卢圣鄂,等.富集培养下的若尔盖高原湿地低温纤维素降解细菌群落结构[J].应用与环境生物学报,2016,22(03):402-408.
    [26]Chowdhury S P,Dietel K,R?ndler M,et al.Effects of Bacillus amyloliquefaciens FZB42 on lettuce growth and health under pathogen pressure and its impact on the rhizosphere bacterial community[J].PLOS ONE,2013,8(7):e68818.
    [27]Schmidt C S,Alavi M,Cardinale M,et al.Stenotrophomonas rhizophila DSM14405T promotes plant growth probably by altering fungal communities in the rhizosphere[J].Biology and Fertility of Soils,2012,48(8):947-960.
    [28]Wang L,Ling Q,Tang L,et al.Degradation Characteristics of Acephate by Methylobacterium sp.YAL-2[J].Chinese Journal of Appplied Environmental Biology,2012,18(3):438.
    [29]Balachandran C,Duraipandiyan V,Ignacimuthu S.Cytotoxic(A549)and antimicrobial effects of Methylobacterium sp.isolate(ERI-135)from Nilgiris forest soil,India[J].Asian Pacific Journal of Tropical Biomedicine,2012,2(9):712-716.
    [30]Dong H,Rui J,Sun J,et al.Complete genome sequencing and diversity analysis of lipolytic enzymes in Stenotrophomonas maltophilia OUC_Est10[J].Acta Microbiologica Sinica,2017,57(11):1716-1721
    [31]Sang Y,Wang Y,Ni H,et al.The Ralstonia solanacearum type III effector RipAY targets plant redox regulators to suppress immune responses[J].Molecular Plant Pathology,2018,19(1):129-142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700