山体滑坡灾害险情的水上交通管制模式
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Control Mode of Waterway Traffic under Dangerous Mountain Landslide Conditions
  • 作者:程志友 ; 王平义 ; 杨成渝 ; 王仕贤 ; 郑捷 ; 李亚玲
  • 英文作者:CHENG Zhiyou;WANG Pingyi;YANG Chengyu;WANG Shixian;ZHENG Jie;LI Yaling;Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education,Chongqing Jiaotong University;Hubei Key Laboratory of Inland Shipping Technology,Wuhan University of Technology;School of Shipping and Naval Architecture,Chongqing Jiaotong University;National Engineering Research Center for Inland Waterway Regulation,Chongqing Jiaotong University;Command Center,Changjiang Maritime Safety Administration;Command Center,Chongqing Maritime Safety Administration;School of Transportation,Wuhan University of Technology;
  • 关键词:滑坡涌浪 ; 发生概率 ; 风险评估 ; 交通管制模式
  • 英文关键词:landslide surge;;occurrence probability;;risk assessment;;traffic control mode
  • 中文刊名:XNJT
  • 英文刊名:Journal of Southwest Jiaotong University
  • 机构:重庆交通大学水利水运工程教育部重点实验室;武汉理工大学内河航运技术湖北省重点实验室;重庆交通大学航运与船舶工程学院;重庆交通大学国家内河航道整治工程技术研究中心;长江海事局指挥中心;重庆海事局指挥中心;武汉理工大学交通学院;
  • 出版日期:2018-08-15
  • 出版单位:西南交通大学学报
  • 年:2018
  • 期:v.53;No.242
  • 基金:国家自然科学基金资助项目(51479015);; 中国博士后基金资助项目(2016M592889XB);; 重庆市教育委员会科学技术研究资助项目(KJ1500519);; 重庆交通大学国家内河航道整治工程技术研究中心暨水利水运工程教育部重点实验室开放基金资助项目(SLK2016B06)
  • 语种:中文;
  • 页:XNJT201804012
  • 页数:8
  • CN:04
  • ISSN:51-1277/U
  • 分类号:92-99
摘要
为了保障船舶航行安全和维护航道通航效率,以大中规模剧动式岩土混合体滑坡及其涌浪为对象,在大量案例统计资料、物理模型实验、文献查阅及实地调研资料等基础上,根据滑坡变形破坏阶段和环境外力诱发因素研判山体滑坡发生概率,根据滑坡破坏变形阶段、滑坡涌浪规模、环境外力诱发因素、通航环境限制条件研判山体滑坡灾害的海事综合风险;根据其海事风险演变特征,提出以交通管制形式和限航等级为要素的水上交通管制模式,交通管制形式依据山体滑坡灾害发生概率确定,限航等级依据山体滑坡灾害综合海事风险而确定.研究结果表明:当山体滑坡灾害发生概率为0.6、山体滑坡灾害综合海事风险分别取值1.80和2.25时,应分别实施戒备性通航和限定通航形式的限制性通航;当山体滑坡灾害发生概率为0.72、综合海事风险分别取值2.16和2.70时,应分别实施限定船舶对象与限定通航时间相结合的限制性通航和禁航.
        The control mode of waterway traffic under dangerous mountain landslide conditions was studied to safeguard ship navigation and enhance the transportation efficiency of water channels. Largescale surge generated by paroxysmal mountain landslides was considered based on a considerable amount of case data,conclusions from physical model experiments,conclusions from consulting theliterature,and data from practical investigation. The occurrence probability of mountain landslides was estimated according to the stage of landslides deformation and effects of external environmental forces.The maritime risk caused by mountain landslides was assessed according to the stage of landslides deformation,the scale of the surge generated by mountain landslides, and effects of external environmental forces and restricted environmental conditions on ships. The control mode of waterway traffic,which included forms of traffic control and prohibited levels of ship traffic,was designed based on evolving traits of maritime risk. The form of traffic control should depend on the estimated occurrence probability of mountain landslide,and the prohibited level of ship traffic should depend on maritime risk caused by the mountain landslide. A case study shows that,when the occurrence probability of a mountain landslide is 0. 6 and the maritime risk of a mountain landslide is 1. 80,the alert mode of traffic control must be adopted. When the occurrence probability is 0. 6 and the maritime risk is 2. 25,the mode of traffic control with a definite ship flow form must be adopted. When the occurrence probability is 0. 72 and the maritime risk is 2. 16,the mode of traffic control with definite ship objects and definite time must be adopted; when the occurrence probability is 0. 72 and the maritime risk is 2. 70,the prohibited mode of traffic control is necessary.
引文
[1]陶志刚,李海鹏,孙光林,等.基于恒阻大变形锚索的滑坡监测预警系统研发及应用[J].岩土力学,2015,36(10):3032-3039.TAO Zhigang,LI Haipeng,SUN Guanglin,et al.Development of monitoring and early warning system for landslides based on constant resistance and large deformation anchor cable and its application[J].Rock and Soil Mechanics,2015,36(10):3032-3039.
    [2]KAMPHIS J W,BOWERING R J.Impulse waves generated by landslides[C]∥ASCE,12th International Conference on Coastal Engineering.Washington D.C.:American Society of Civil Engineers,1971:689-699.
    [3]FIRTZ H M,HAGER W H,MINOR H E.Near field characteirstics of landslide generated impulse waves[J].ASCE,Journal of Waterway,Port,Coastal,and Ocean Engineering,2004,130(6):287-302.
    [4]HUANG Bolin,YIN Yueping,CHEN Xiaoting,et al.Experimental modeling of tsunamis generated by subaerial landslides:two case studies of the Three Gorges Reservoir,China[J].Environmental Earth Sciences,2014,71(9):3813-3825.
    [5]王育林,陈凤云,齐华林.危岩体崩滑对航道影响及滑坡涌浪特征研究[J].中国地质灾害与防治学报,1994,5(3):95-10.
    [6]胡小卫.山区河道型水库滑坡涌浪特性研究[D].重庆:重庆交通大学,2010.
    [7]门永强.山区河道型水库陡岩滑坡涌浪特性及对航道通航条件影响研究[D].重庆:重庆交通大学,2013.
    [8]陈里.山区河道型水库岩体滑坡涌浪特性及对航道的影响试验研究[D].重庆:重庆交通大学,2014.
    [9]路鼎,王平义,喻涛,等.滑坡涌浪影响下船舶航行限制范围试验研究[J].水利水运工程学报,2014,36(4):70-74.LU Ding,WANG Pingyi,YU Tao,et al.Study of restricted areas for ships during landslide surge disasters[J].Hydro-Science and Engineering,2014,36(4):70-74.
    [10]许海勇,王平义,喻涛.滑坡涌浪影响下船舶安全锚泊范围试验研究[J].人民长江,2015,46(15):78-81.XU Haiyong,WANG Pingyi,YU Tao.Experimental studies of safety scope for ships'anchorage under landslide generated waves[J].Yangtze River,2015,46(15):78-81.
    [11]王平义,韩林峰,喻涛,等.滑坡涌浪对高桩码头船舶撞击力的影响[J].哈尔滨工程大学学报,2016,37(6):878-884.WANG Pingyi,HAN Linfeng,YU Tao,et al.Effects of landslide generated impulse waves on ship impact force for pile wharf[J].Journal of Harbin Engineering University,37(6):878-884,2016.
    [12]LI Huipeng.Hierarchical risk assessment of water supply systems[D].London:Loughborough University,2007.
    [13]程志友,王平义,杨成渝,等.山体滑坡海事风险的三维测度方法[J].水运工程,2017(9):64-69.CHENG Zhiyou,WANG Pingyi,YANG Chengyu,et al.Method of three-dimensional measurement of maritime risk caused by landslide[J].Port&Waterway Engineering,2017(9):64-69.
    [14]刘广润,晏鄂川,练操.论滑坡分类[J].工程地质学报,2002,10(4):95-100.LIU Guangrun,YAN Echuan,LIAN Cao.Discussion on classification of landslides[J].Journal of Engineering Geology,2002,10(4):95-100.
    [15]张德成.丁家坟滑坡形成机制及稳定性分析[D].昆明:昆明理工大学,2010.
    [16]刘华磊.丁家坟滑坡失稳机制及变形预测研究[D].昆明:昆明理工大学,2010.
    [17]顾成壮,胡卸文,罗刚,等.地震滑坡启程动力学机理[J].西南交通大学学报,2012,47(4):567-572.GU Chengzhuang,HU Xiewen,LUO Gang,et al.Setting-out mechanism of landslide induced by earthquake[J].Journal of Southwest Jiaotong University,2012,47(4):567-572.
    [18]李秀珍,许强,黄润秋.滑坡预报判据研究[J].中国地质灾害与防治学报,2003,14(4):5-11.LI Xiuzhen,XU Qiang,HUANG Runqiu,et al.Research on prediction criterion for temporary prediction of landslide[J].The Chinese Journal of Geological Hazard and Control,2003,14(4):5-11.
    [19]王作成.基于ZigBee的山体滑坡预警系统研究与设计[D].兰州:西北师范大学,2013.
    [20]中华人民共和国长江海事局.长江海事局水上交通安全预警实施细则[EB/OL].(2011-08-05)[2015-08-07].http://www.hsmsa.gov.cn/21/1185/178014.html.
    [21]罗超.滑波涌浪数值模拟及其与结构物的相互作用[D].武汉:武汉理工大学,2012.
    [22]黄波林,陈小婷,殷跃平,等.滑坡崩塌涌浪计算方法研究[J].工程地质学报,2012,20(6):909-915.HUANG Bolin,CHEN Xiaoting,YIN Yueping,et al.Computing system for impulse wave in reservior generated by landslide&rockfall[J].Journal of Engineering Geology,2012,20(6):909-915.
    [23]张矢宇,熊兵.长江干线水上交通风险评估与预警管理研究[M].武汉:武汉理工大学出版社,2016:35-117.
    [24]李勇.船舶操纵[M].北京:人民交通出版社,1999:346-359.
    [25]交通运输部办公厅.水上交通管制管理办法[EB/OL].(2015-04-21)[2016-10-20].http://www.snet.com.cn.
    [26]杨诗义.滑坡预测预报与滑坡分类体系研究[D].武汉:武汉科技大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700