Strongly coupled N-doped carbon/Fe_3O_4/N-doped carbon hierarchical micro/nanostructures for enhanced lithium storage performance
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Strongly coupled N-doped carbon/Fe_3O_4/N-doped carbon hierarchical micro/nanostructures for enhanced lithium storage performance
  • 作者:Tiantian ; Ma ; Xianghong ; Liu ; Li ; Sun ; Yongshan ; Xu ; Lingli ; Zheng ; Jun ; Zhang
  • 英文作者:Tiantian Ma;Xianghong Liu;Li Sun;Yongshan Xu;Lingli Zheng;Jun Zhang;College of Physics, Qingdao University;Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University;
  • 英文关键词:Iron oxide;;Micro/nanostructures;;Carbon tubes;;Anode;;Coupling
  • 中文刊名:TRQZ
  • 英文刊名:能源化学(英文版)
  • 机构:College of Physics, Qingdao University;Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University;
  • 出版日期:2019-07-15
  • 出版单位:Journal of Energy Chemistry
  • 年:2019
  • 期:v.34
  • 基金:financially supported by the National Natural Science Foundation of China (Nos. 21601098 and 51602167);; Shandong Provincial Science Foundation (ZR2016EMB07 and ZR2017JL021);; Key Research and Development Program (2018GGX102033);; Qingdao Applied Fundamental Research Project (16-5-1-92-jch and 17-1-1-81-jch)
  • 语种:英文;
  • 页:TRQZ201907006
  • 页数:9
  • CN:07
  • ISSN:10-1287/O6
  • 分类号:51-59
摘要
A strong interface coupling is of vital importance to develop metal oxide/carbon nanocomposite anodes for next-generation lithium ion batteries.Herein,a rational N-doped carbon riveting strategy is designed to boost the lithium storage performance of Fe_3O_4/N-doped carbon tubular structures.Polypyrrole(PPy)has been used as the precursor for N-doped carbon.N-doped carbon-riveted Fe_3O_4/N-doped carbon(N–C@Fe_3O_4@N–C)nanocomposites were obtained by pyrolysis of PPy-coated FeOOH@PPy nanotubes in Ar atmosphere.When tested as an anode for LIBs,the N–C@Fe_3O_4@N–C displays a high reversible discharge capacity of 675.8 m A h g~(-1)after 100 cycles at a current density of 100 m A g~(-1)and very good rate capability(470 mA h g~(-1)at 2 A g~(-1)),which significantly surpasses the performance of Fe_3O_4@N–C.TEM analysis reveals that after battery cycling the FeO_xparticles detached from the carbon fibers for Fe_3O_4@N–C,while for N–C@Fe_3O_4@N–C the FeO_xparticles were still trapped in the carbon matrix,thus preserving good electrical contact.Consequently,the superior performance of N–C@Fe_3O_4@N–C is attributed to the synergistic effect between Fe_3O_4and N-doped carbon combined with the unique structure properties of the nanocomposites.The strategy reported in this work is expected to be applicable for designing other electrode materials for LIBs.
        A strong interface coupling is of vital importance to develop metal oxide/carbon nanocomposite anodes for next-generation lithium ion batteries.Herein,a rational N-doped carbon riveting strategy is designed to boost the lithium storage performance of Fe_3O_4/N-doped carbon tubular structures.Polypyrrole(PPy)has been used as the precursor for N-doped carbon.N-doped carbon-riveted Fe_3O_4/N-doped carbon(N–C@Fe_3O_4@N–C)nanocomposites were obtained by pyrolysis of PPy-coated FeOOH@PPy nanotubes in Ar atmosphere.When tested as an anode for LIBs,the N–C@Fe_3O_4@N–C displays a high reversible discharge capacity of 675.8 m A h g~(-1)after 100 cycles at a current density of 100 m A g~(-1)and very good rate capability(470 mA h g~(-1)at 2 A g~(-1)),which significantly surpasses the performance of Fe_3O_4@N–C.TEM analysis reveals that after battery cycling the FeO_xparticles detached from the carbon fibers for Fe_3O_4@N–C,while for N–C@Fe_3O_4@N–C the FeO_xparticles were still trapped in the carbon matrix,thus preserving good electrical contact.Consequently,the superior performance of N–C@Fe_3O_4@N–C is attributed to the synergistic effect between Fe_3O_4and N-doped carbon combined with the unique structure properties of the nanocomposites.The strategy reported in this work is expected to be applicable for designing other electrode materials for LIBs.
引文
[1]N.Mahmood,Y.Hou,Adv.Sci.1(2014)1400012.
    [2]X.Wang,Q.H.Weng,Y.J.Yang,Y.Bando,D.Gotberg,Chem.Soc.Rev.45(2016)4042-4073.
    [3]Z.L.Tyler Stephenson,Brian Olsenab,David Mitlin,Adv.Funct.Mater.27(2017)1702317.
    [4]J.Gao,S.-Q.Shi,H.Li,Chin.Phys.B 25(2016)018210.
    [5]X.Liu,T.Ma,L.Sun,Y.Xu,J.Zhang,N.Pinna,ChemSusChem 11(2018)1-8.
    [6]X.Liu,J.Zhang,W.Si,L.Xi,S.Oswald,C.Yan,O.G.Schmidt,Nanoscale 7(2014)282-288.
    [7]L.Zhang,H.B.Wu,X.Wen Lou,Mater.Horiz.1(2014)133-138.
    [8]M.Li,C.Ma,Q.-C.Zhu,S.-M.Xu,X.Wei,Y.-M.Wu,W.-P.Tang,K.-X.Wang,J.-S.Chen,Dalton Trans.46(2017)5025-5032.
    [9]X.Liu,W.Si,J.Zhang,X.Sun,J.Deng,S.Baunack,S.Oswald,L.Liu,C.Yan,O.G.Schmidt,Sci.Rep.4(2014)7452.
    [10]K.Cao,L.Jiao,H.Liu,Y.Liu,Y.Wang,Z.Guo,H.Yuan,Adv.Energy Mater.5(2015)1401421.
    [11]S.W.Chunnian He,N.Zhao,C.Shi,E.Liu,J.Li,ACS Nano 7(2013)4459-4469.
    [12]Z.He,K.Wang,S.Zhu,L.A.Huang,M.Chen,J.Guo,S.Pei,H.Shao,J.Wang,ACS Appl.Mater.Interfaces 10(2018)10974-10985.
    [13]R.Wang,C.Xu,J.Sun,L.Gao,C.Lin,J.Mater.Chem.A 1(2013)1794-1800.
    [14]J.Liu,X.Xu,R.Hu,L.Yang,M.Zhu,Adv.Energy Mater.6(2016)1600256.
    [15]L.Zhang,H.B.Wu,X.W.D.Lou,Adv.Energy Mater.4(2014)1300958.
    [16]X.Qin,H.Zhang,J.Wu,X.Chu,Y.-B.He,C.Han,C.Miao,S.Wang,B.Li,F.Kang,Carbon 87(2015)347-356.
    [17]G.Gao,S.Lu,B.Dong,Z.Zhang,Y.Zheng,S.Ding,J.Mater.Chem.A 3(2015)4716-4721.
    [18]Y.Wu,Y.Wei,J.Wang,K.Jiang,S.Fan,Nano Lett.13(2013)818-823.
    [19]Y.Wan,Z.Yang,G.Xiong,R.Guo,Z.Liu,H.Luo,J.Power Sources 294(2015)414-419.
    [20]X.Wang,X.Liu,G.Wang,Y.Xia,H.Wang,J.Mater.Chem.A 4(2016)18532-18542.
    [21]Y.Liu,N.Wu,Z.Wang,H.Cao,J.Liu,New J.Chem.41(2017)6241-6250.
    [22]X.-Y.Yu,H.Hu,Y.Wang,H.Chen,X.W.D.Lou,Angew.Chem.Int.Ed.54(2015)7395-7398.
    [23]H.Liu,Z.Li,Y.Liang,R.Fu,D.Wu,Carbon 84(2015)419-425.
    [24]X.H.Liu,J.Zhang,S.J.Guo,N.Pinna,J.Mater.Chem.A 4(2016)1423-1431.
    [25]B.Tang,G.L.Wang,L.H.Zhuo,J.C.Ge,L.J.Cui,Inorg.Chem.45(2006)5196-5200.
    [26]S.Yuan,Z.Zhou,G.Li,CrystEngComm 13(2011)4709-4713.
    [27]X.Hao,J.Wang,B.Ding,L.Shen,Y.Xu,Y.Wang,Z.Chang,H.Dou,X.Lu,X.Zhang,Chem.Eur.J 22(2016)16668-16674.
    [28]M.M.Vadiyar,X.Liu,Z.Ye,ChemSusChem 11(2018)2410-2420.
    [29]S.Majumder,S.Dey,K.Bagani,S.K.Dey,S.Banerjee,S.Kumar,Dalton Trans.44(2015)7190-7202.
    [30]F.Reguyal,A.K.Sarmah,Environ.Pollut.233(2018)510-519.
    [31]W.Luo,F.Li,J.-J.Gaumet,P.Magri,S.Diliberto,L.Zhou,L.Mai,Adv.Energy Mater.(2018)1703237.
    [32]Z.S.Wu,S.Yang,Y.Sun,K.Parvez,X.Feng,K.Mullen,J.Am.Chem.Soc.134(2012)9082-9085.
    [33]T.Yamashita,P.Hayes,Appl.Surf.Sci.254(2008)2441-2449.
    [34]Z.Huang,H.Pan,W.Yang,H.Zhou,N.Gao,C.Fu,S.Li,H.Li,Y.Kuang,ACSNano 12(2018)208-216.
    [35]L.Li,A.Kovalchuk,H.Fei,Z.Peng,Y.Li,N.D.Kim,C.Xiang,Y.Yang,G.Ruan,J.M.Tour,Adv.Energy Mater.5(2015)1500171.
    [36]Y.Huang,Z.Xu,J.Mai,T.-K.Lau,X.Lu,Y.-J.Hsu,Y.Chen,A.C.Lee,Y.Hou,Y.S.Meng,Q.Li,Nano Energy 41(2017)426-433.
    [37]G.K.Lee,Sudeok Kim,Sunkyu Choi,Jinsub,Adv.Funct.Mater.27(2017)1703538.
    [38]J.Luo,J.Liu,Z.Zeng,C.F.Ng,L.Ma,H.Zhang,J.Lin,Z.Shen,H.J.Fan,Nano Lett.13(2013)6136-6143.
    [39]Y.Jiang,D.Zhang,Y.Li,T.Yuan,N.Bahlawane,C.Liang,W.Sun,Y.Lu,M.Yan,Nano Energy 4(2014)23-30.
    [40]G.Zou,Z.Zhang,J.Guo,B.Liu,Q.Zhang,C.Fernandez,Q.Peng,ACS Appl.Mater.Interfaces 8(2016)22280-22286.
    [41]F.Zou,X.Hu,Z.Li,L.Qie,C.Hu,R.Zeng,Y.Jiang,Y.Huang,Adv.Mater.26(2014)6622-6628.
    [42]J.Jiao,W.Qiu,J.Tang,L.Chen,L.Jing,Nano Res.9(2016)1256-1266.
    [43]E.Kang,Y.S.Jung,A.S.Cavanagh,G.-H.Kim,S.M.George,A.C.Dillon,J.K.Kim,J.Lee,Adv.Funct.Mater.21(2011)2430-2438.
    [44]M.Sathish,T.Tomai,I.Honma,J.Power Sources 217(2012)85-91.
    [45]Z.Zeng,H.Zhao,J.Wang,P.Lv,T.Zhang,Q.Xia,J.Power Sources 248(2014)15-21.
    [46]P.Yu,J.Electrochem.Soc.146(1999)8-14.
    [47]J.Jiao,J.Tang,W.Gao,D.Kuang,Y.Tong,L.Chen,J.Power Sources 274(2015)464-470.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700