基于皮秒激光的超疏水镍铝青铜合金表面的制备
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fabrication of Superhydrophobic Nickel-Aluminum Bronze Alloy Surfaces Based on Picosecond Laser Pulses
  • 作者:章泽斌 ; 花银群 ; 叶云霞 ; 陈瑞芳 ; 李志宝 ; 杨进 ; 文文
  • 英文作者:Zhang Zebin;Hua Yinqun;Ye Yunxia;Chen Ruifang;Li Zhibao;Yang Jin;Shuai Wenen;School of Materials Science and Engineering, Jiangsu University;School of Mechanical Engineering, Jiangsu University;
  • 关键词:激光技术 ; 激光刻蚀 ; 镍铝青铜合金 ; 微纳米复合结构 ; 超疏水
  • 英文关键词:laser technique;;laser etching;;nickel-aluminum bronze alloy;;micro-nano composite structure;;superhydrophobicity
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:江苏大学材料科学与工程学院;江苏大学机械工程学院;
  • 出版日期:2018-12-25 07:00
  • 出版单位:中国激光
  • 年:2019
  • 期:v.46;No.507
  • 基金:国家自然科学基金(51641102)
  • 语种:中文;
  • 页:JJZZ201903015
  • 页数:9
  • CN:03
  • ISSN:31-1339/TN
  • 分类号:122-130
摘要
利用皮秒激光器在镍铝青铜合金表面制备了具有不同微观形貌的微纳米复合结构,再通过硬脂酸进行表面修饰。采用扫描电镜和X射线衍射仪等表征了所得表面的形貌和化学成分。研究结果表明,经皮秒激光加工和硬脂酸修饰后,表面的接触角都达到150°以上。不同的脉冲能量密度下,试样表面的微观形貌和润湿性不同。随着脉冲能量密度的增大,修饰后的试样表面的滚动角逐渐减小,当脉冲能量密度为6.85 J/cm~2时,滚动角减小到7°,随着脉冲能量密度的进一步增加,滚动角又逐渐增大。耐蚀性测试结果表明:超疏水镍铝青铜合金表面具有更好的耐腐蚀性能。采用优化的工艺参数可以在镍铝青铜合金上加工出超疏水表面,有助于提高其耐腐蚀性能。
        The micro-nano composite structures with different micromorphologies are prepared on the nickel-aluminum bronze alloy surfaces by a picosecond laser, and then surface-modofied by stearic acid. Scanning electron microscopy and X-ray diffraction and others have been performed to characterize the morphologies and chemical composition. The research results show that the contact angle of the surfaces obtained by picosecond laser processing and surface modification of stearic acid is more than 150°. The samples have different surface morphologies and wettability under different laser fluences. With the increase of laser fluence, the sliding angle of the modified sample surface gradually decreases. When laser fluence is 6.85 J/cm~2, the sliding angle decreases to 7°. With the further increase of laser fluence, the sliding angle gradually increases again. The corrosion resistance test results show that the surface of superhydrophobic nickel-aluminium bronze alloy has better corrosion resistance. The superhydrophobic surface of nickel-aluminium bronze alloy can be machined with optimized process parameters, which is helpful to improve the corrosion resistance of nickel-aluminium bronze alloy.
引文
[1] Liu K S, Jiang L. Bio-inspired self-cleaning surfaces[J]. Annual Review of Materials Research, 2012, 42(1): 231-263.
    [2] Gao X F, Jiang L. Water-repellent legs of water striders[J]. Nature, 2004, 432(7013): 36.
    [3] Li X Y, Du X, He J H. Self-cleaning antireflective coatings assembled from peculiar mesoporous silica nanoparticles[J]. Langmuir, 2010, 26(16): 13528-13534.
    [4] Yang Z Q, Wang L D, Sun W, et al. Superhydrophobic epoxy coating modified by fluorographene used for anti-corrosion and self-cleaning[J]. Applied Surface Science, 2017, 401: 146-155.
    [5] Huang Q G, Pan G, Wu H, et al. Investigation about drag reduction water tunnel experiment and mechanism of superhydrophobic surface[J].Journal of Experiments in Fluid Mechanics, 2011, 25(5): 21-25. 黄桥高, 潘光, 武昊, 等. 超疏水表面减阻水洞实验及减阻机理研究[J]. 实验流体力学, 2011, 25(5): 21-25.
    [6] Zhang H, Lamb R, Lewis J. Engineering nanoscale roughness on hydrophobic surface: Preliminary assessment of fouling behaviour[J]. Science and Technology of Advanced Materials, 2005, 6(3/4): 236-239.
    [7] Long J Y, Wu Y C, Gong D W,et al. Femtosecond laser fabricated superhydrophobic copper surfaces and their anti-icing properties[J]. Chinese Journal of Lasers, 2015, 42(7): 0706002. 龙江游, 吴颖超, 龚鼎为, 等. 飞秒激光制备超疏水铜表面及其抗结冰性能[J]. 中国激光, 2015, 42(7): 0706002.
    [8] Wang L, Guo S J, Hu X G, et al. Facile electrochemical approach to fabricate hierarchical flowerlike gold microstructures: Electrodeposited superhydrophobic surface[J]. Electrochemistry Communications, 2008, 10(1): 95-99.
    [9] Zhou S G, Zhu X B, Yan Q Q. One-step electrochemical deposition to achieve superhydrophobic cobalt incorporated amorphous carbon-based film with self-cleaning and anti-corrosion[J]. Surface and Interface Analysis, 2018, 50(3): 290-296.
    [10] Shen P, Uesawa N, Inasawa S, et al. Characterization of flowerlike silicon particles obtained from chemical etching: Visible fluorescence and superhydrophobicity[J]. Langmuir, 2010, 26(16): 13522-13527.
    [11] Tsougeni K, Papageorgiou D, Tserepi A, et al. “Smart” polymeric microfluidics fabricated by plasma processing: Controlled wetting, capillary filling and hydrophobic valving[J]. Lab on a Chip, 2010, 10(4): 462-469.
    [12] Li Q Q, Yan Y H, Yu M, et al. Synthesis of polymeric fluorinated sol-gel precursor for fabrication of superhydrophobic coating[J]. Applied Surface Science, 2016, 367: 101-108.
    [13] Jin M H, Feng X J, Xi J M, et al. Super-hydrophobic PDMS surface with ultra-low adhesive force[J]. Macromolecular Rapid Communications, 2005, 26(22): 1805-1809.
    [14] Cardoso M R, Tribuzi V, Balogh D T, et al. Laser microstructuring for fabricating superhydrophobic polymeric surfaces[J]. Applied Surface Science, 2011, 257(8): 3281-3284.
    [15] Fadeeva E, Truong V K, Stiesch M, et al. Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation[J]. Langmuir, 2011, 27(6): 3012-3019.
    [16] Jagdheesh R, Pathiraj B, Karatay E, et al. Laser-induced nanoscale superhydrophobic structures on metal surfaces[J]. Langmuir, 2011, 27(13): 8464-8469.
    [17] Wu B, Zhou M, Li J, et al. Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser[J]. Applied Surface Science, 2009, 256(1): 61-66.
    [18] Moradi S, Kamal S, Englezos P, et al. Femtosecond laser irradiation of metallic surfaces: effects of laser parameters on superhydrophobicity[J]. Nanotechnology, 2013, 24(41): 415302.
    [19] Li G Q, Li J W, Zhang C C, et al. Large-area one-step assembly of three-dimensional porous metal micro/nanocages by ethanol-assisted femtosecond laser irradiation for enhanced antireflection and hydrophobicity[J]. ACS Applied Materials & Interfaces, 2015, 7(1): 383-390.
    [20] Li B J, Zhou M, Yuan R, et al. Fabrication of titanium-based microstructured surfaces and study on their superhydrophobic stability[J].Journal of Materials Research, 2008, 23(9): 2491-2499.
    [21] Cheng J, Liu C S, Shang S, et al. A review of ultrafast laser materials micromachining[J]. Optics & Laser Technology, 2013, 46: 88-102.
    [22] Liu Y, Jiang Y J.Super-hydrophobic surface of poly(vinylidene fluoride) film fast fabricated by KrF excimer laser irradiation[J]. Chinese Journal of Lasers, 2011, 38(1): 0106002. 刘莹, 蒋毅坚. 准分子激光快速制备超疏水性聚偏氟乙烯材料[J]. 中国激光, 2011, 38(1): 0106002.
    [23] Farshchian B, Gatabi J R, Bernick S M, et al. Scaling and mechanism of droplet array formation on a laser-ablated superhydrophobic grid[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 547: 49-55.
    [24] Yang Q B, Liu S J, Wang Y T, et al. Super-hydrophobic micro-nano structures on aluminum surface induced by nanosecond laser[J]. Laser & Optoelectronics Progress, 2017, 54(9): 091406. 杨奇彪, 刘少军, 汪于涛, 等. 纳秒激光诱导铝板表面超疏水微纳结构[J]. 激光与光电子学进展, 2017, 54(9): 091406.
    [25] Yang Q B, Deng B, Wang Y T, et al. Superhydrophobic surface of aluminium base induced by femtosecond laser[J]. Laser & Optoelectronics Progress, 2017, 54(10): 101408. 杨奇彪, 邓波, 汪于涛, 等.飞秒激光诱导铝基的超疏水表面[J]. 激光与光电子学进展, 2017, 54(10): 101408.
    [26] Cao W S, Zhao Y, Wu Y, et al. Super-hydrophobic surface of polytetrafluoroethylene fabricated by picosecond laser and phenomenon of total internal reflection underwater[J]. Chinese Journal of Lasers, 2014, 41(9): 0903008. 曹文深, 赵艳, 吴燕, 等. 皮秒激光制备超疏水聚四氟乙烯表面及其水下全反射研究[J]. 中国激光, 2014, 41(9): 0903008.
    [27] Ding J, Zhao Y, Jiang Y J. Fabrication of super-hydrophilic surface of strontium titanate single crystal by using picosecond laser processing[J]. Journal of Optoelectronics·Laser, 2014, 25(9): 1736-1741. 丁杰, 赵艳, 蒋毅坚. 皮秒激光加工制备钛酸锶单晶超亲水表面[J]. 光电子·激光, 2014, 25(9): 1736-1741.
    [28] Culpan E A, Rose G. Corrosion behaviour of cast nickel aluminiumbronze in sea water[J]. British Corrosion Journal, 1979, 14(3): 160-166.
    [29] Zhang H L. The application of Ni-Al bronze propeller material to naval vessel at home and abroad[J]. Materials for Mechanical Engineering, 1996, 20(1): 33-35,47. 张化龙. 国内外镍铝青铜螺旋桨材料在舰船上的应用[J]. 机械工程材料, 1996, 20(1): 33-35,47.
    [30] Sabbaghzadeh B, Parvizi R, Davoodi A, et al. Corrosion evaluation of multi-pass welded nickel-aluminum bronze alloy in 3.5% sodium chloride solution: A restorative application of gas tungsten arc welding process[J]. Materials & Design, 2014, 58(6): 346-356.
    [31] Wu Z, Cheng Y F, Liu L, et al. Effect of heat treatment on microstructure evolution and erosion-corrosion behavior of a nickel-aluminum bronze alloy in chloride solution[J]. Corrosion Science, 2015, 98: 260-270.
    [32] Schüssler A, Exner H E. The corrosion of nickel-aluminium bronzes in seawater: I. Protective layer formation and the passivation mechanism[J]. Corrosion Science, 1993, 34(11): 1793-1802.
    [33] Kietzig A M, Hatzikiriakos S G, Englezos P. Patterned superhydrophobicmetallic surfaces[J]. Langmuir, 2009, 25(8): 4821-4827.
    [34] Lehr J, Kietzig A M. Production of homogenous micro-structures by femtosecond laser micro-machining[J]. Optics and Lasers in Engineering, 2014, 57: 121-129.
    [35] Feng L B, Che Y H, Liu Y H, et al. One-step immersion method for fabricating superhydrophobic aluminum alloy with excellent corrosion resistance[J]. Surface and Interface Analysis, 2016, 48(12): 1320-1327.
    [36] Bizi-Bandoki P, Valette S, Audouard E, et al. Time dependency of the hydrophilicity and hydrophobicity of metallic alloys subjected to femtosecond laser irradiations[J]. Applied Surface Science, 2013, 273: 399-407.
    [37] Long J Y, Zhong M L, Fan P X, et al. Wettability conversion of ultrafast laser structured copper surface[J]. Journal of Laser Applications, 2015, 27(S2): S29107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700